@article{CM_1996__101_2_115_0,
author = {Sanderson, Yasmine B.},
title = {Dimensions of Demazure modules for rank two affine Lie algebras},
journal = {Compositio Mathematica},
volume = {104},
year = {1996},
pages = {115-131},
mrnumber = {1389364},
zbl = {0873.17021},
language = {en},
url = {http://dml.mathdoc.fr/item/CM_1996__101_2_115_0}
}
Sanderson, Yasmine B. Dimensions of Demazure modules for rank two affine Lie algebras. Compositio Mathematica, Tome 104 (1996) pp. 115-131. http://gdmltest.u-ga.fr/item/CM_1996__101_2_115_0/
[D] : Une nouvelle formule des caractères, Bull. Soc. Math. France, 2e série 98, (1974), 163-172. | MR 430001 | Zbl 0365.17005
[Ka] : Infinite-dimensional Lie-algebras, Cambridge University Press, Cambridge, 1985. | MR 823672 | Zbl 0574.17010
[Ku] : Demazure character formula in arbitrary Kac-Moody setting. Invent. Math. 89 (1987), 395-423. | MR 894387 | Zbl 0635.14023
[LS] and : Standard monomial theory for SL2, Infinite-dimensional Lie algebras and groups (Luminy- Marseille 1988), World Sci. Publishing, Teaneck, NJ,1989, pp. 178-234. | MR 1026953 | Zbl 0759.22022
[LW] and : The structure of standard modules, I: Universal algebras and the Rogers-Ramanujan identities. Invent. Math. 77 (1984), 199-290. | MR 752821 | Zbl 0577.17009
[L1] : A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras, Invent. Math. 116 (1994), 329-346. | MR 1253196 | Zbl 0805.17019
[L2] : Paths and root operators in representation theory. Ann. Math., to appear. | MR 1356780 | Zbl 0858.17023
[M] : Formule de Demazure-Weyl et généralisation du théorème de Borel-Weil-Bott, C.R. Acad. Sc. Paris, Série I, 303 no. 9, (1986), 391-394. | MR 862200 | Zbl 0602.17008