Dimensions of Demazure modules for rank two affine Lie algebras
Sanderson, Yasmine B.
Compositio Mathematica, Tome 104 (1996), p. 115-131 / Harvested from Numdam
Publié le : 1996-01-01
@article{CM_1996__101_2_115_0,
     author = {Sanderson, Yasmine B.},
     title = {Dimensions of Demazure modules for rank two affine Lie algebras},
     journal = {Compositio Mathematica},
     volume = {104},
     year = {1996},
     pages = {115-131},
     mrnumber = {1389364},
     zbl = {0873.17021},
     language = {en},
     url = {http://dml.mathdoc.fr/item/CM_1996__101_2_115_0}
}
Sanderson, Yasmine B. Dimensions of Demazure modules for rank two affine Lie algebras. Compositio Mathematica, Tome 104 (1996) pp. 115-131. http://gdmltest.u-ga.fr/item/CM_1996__101_2_115_0/

[D] Demazure, M.: Une nouvelle formule des caractères, Bull. Soc. Math. France, 2e série 98, (1974), 163-172. | MR 430001 | Zbl 0365.17005

[Ka] Kac, V.: Infinite-dimensional Lie-algebras, Cambridge University Press, Cambridge, 1985. | MR 823672 | Zbl 0574.17010

[Ku] Kumar, S.: Demazure character formula in arbitrary Kac-Moody setting. Invent. Math. 89 (1987), 395-423. | MR 894387 | Zbl 0635.14023

[LS] Lakshmibai, V. and Seshadri, C.S.: Standard monomial theory for SL2, Infinite-dimensional Lie algebras and groups (Luminy- Marseille 1988), World Sci. Publishing, Teaneck, NJ,1989, pp. 178-234. | MR 1026953 | Zbl 0759.22022

[LW] Lepowsky, J. and Wilson, R.L.: The structure of standard modules, I: Universal algebras and the Rogers-Ramanujan identities. Invent. Math. 77 (1984), 199-290. | MR 752821 | Zbl 0577.17009

[L1] Littelmann, P.: A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras, Invent. Math. 116 (1994), 329-346. | MR 1253196 | Zbl 0805.17019

[L2] Littelmann, P.: Paths and root operators in representation theory. Ann. Math., to appear. | MR 1356780 | Zbl 0858.17023

[M] Mathieu, O.: Formule de Demazure-Weyl et généralisation du théorème de Borel-Weil-Bott, C.R. Acad. Sc. Paris, Série I, 303 no. 9, (1986), 391-394. | MR 862200 | Zbl 0602.17008