The existence of higher logarithms
Hain, Richard M.
Compositio Mathematica, Tome 104 (1996), p. 247-276 / Harvested from Numdam
Publié le : 1996-01-01
@article{CM_1996__100_3_247_0,
     author = {Hain, Richard M.},
     title = {The existence of higher logarithms},
     journal = {Compositio Mathematica},
     volume = {104},
     year = {1996},
     pages = {247-276},
     mrnumber = {1387666},
     zbl = {0860.19004},
     language = {en},
     url = {http://dml.mathdoc.fr/item/CM_1996__100_3_247_0}
}
Hain, Richard M. The existence of higher logarithms. Compositio Mathematica, Tome 104 (1996) pp. 247-276. http://gdmltest.u-ga.fr/item/CM_1996__100_3_247_0/

1 Beilinson, A.: Higher regulators and values of L-functions of curves, Func. Anal. and its Appl. 14 (1980), 116-118. | MR 575206 | Zbl 0475.14015

2 Beilinson, A.: Notes on absolute Hodge cohomology in Applications of Algebraic K-Theory to Algebraic Geometry and Number Theory, Contemporary Math. 55, part I, Amer. Math. Soc., Providence, 1986, 35-68. | MR 862628 | Zbl 0621.14011

3 Beilinson, A., Macpherson, R., and Schechtman, V.: Notes on motivic cohomology, Duke Math. J. 54 (1987), 679-710. | MR 899412 | Zbl 0632.14010

4 Bloch, S.: Higher regulators, Algebraic K-theory, and zeta functions of elliptic curves, unpublished manuscript, 1978.

5 Carlson, J. and Hain, R.: Extensions of Variations of Mixed Hodge Structure, Théorie de Hodge, Luminy, Juin, 1987, Astérisque no. 179-180, 39-65. | MR 1042801 | Zbl 0717.14004

6 Dupont, J.: The dilogarithm as a characteristic class for flat bundles, J. Pure and App. Alg. 44 (1987), 137-164. | MR 885101 | Zbl 0624.57024

7 Falk, M. and Randell, R.: The lower central series of a fiber-type arrangement, Invent. Math. 82 (1985), 77-88. | MR 808110 | Zbl 0574.55010

8 Gelfand, I., Goresky, M., Macpherson, R., and Serganova, V.: Geometries, convex polyhedra and Schubert cells, Advances in Math. 63 (1987), 301-316. | MR 877789 | Zbl 0622.57014

9 Goncharov, G.: Geometry of configurations, polylogarithms and motivic cohomology, Advances in Math. 114 (1995), 197-318. | MR 1348706 | Zbl 0863.19004

10 Goncharov, A.: Explicit construction of characteristic classes, Advances in Soviet Math. 16 (1993), 169-210. | MR 1237830 | Zbl 0809.57016

11 Hain, R.: Algebraic cycles and extensions of variations of mixed Hodge structure, Proc. Symp. Pure Math. 53 (1993), 175-221. | MR 1141202 | Zbl 0795.14005

12 Hain, R.: Classical polylogarithms, in Motives, Proc. Symp. Pure Math., to appear. | MR 1265550 | Zbl 0807.19003

13 Hain, R. and Macpherson, R.: Higher Logarithms, Ill. J. Math. 34 (1990), 392-475. | MR 1046570 | Zbl 0737.14014

14 Hain, R. and Yang, J.: Real Grassmann polylogarithms and Chern classes, Math. Annalen, to appear. | Zbl 0882.19003

15 Hain, R. and Zucker, S.: Unipotent variations of mixed Hodge structure, Invent. Math. 88 (1987), 83-124. | MR 877008 | Zbl 0622.14007

16 Hanamura, M. and Macpherson, R.: Geometric construction of polylogarithms, Duke Math. J. 70 (1993), to appear. | MR 1224097 | Zbl 0824.14043

17 Hanamura, M. and Macpherson, R.: Geometric construction of polylogarithms, II, preprint, 1993. | MR 1224097 | Zbl 0824.14043

18 Kohno, T.: Séries de Poincaré-Kozul associée aux groupes de tresse pure, Invent. Math. 82 (1985), 57-75. | MR 808109 | Zbl 0574.55009

19 Yang, J.: Algebraic K-groups of number fields and the Hain-MacPherson trilogarithm, Ph.D. Thesis, University of Washington, 1991.