@article{CM_1995__98_2_117_0, author = {Damon, James}, title = {A Bezout theorem for determinantal modules}, journal = {Compositio Mathematica}, volume = {99}, year = {1995}, pages = {117-139}, mrnumber = {1354264}, zbl = {0844.13007}, language = {en}, url = {http://dml.mathdoc.fr/item/CM_1995__98_2_117_0} }
Damon, James. A Bezout theorem for determinantal modules. Compositio Mathematica, Tome 99 (1995) pp. 117-139. http://gdmltest.u-ga.fr/item/CM_1995__98_2_117_0/
[A] Cohomology of a quasihomogeneous complete intersection, Math. USSR Izvestiya 26iii (1986) 437-477. | Zbl 0647.14027
:[D1] Higher Multiplicities and Almost Free Divisors and Complete Intersections (preprint). | MR 1346928 | Zbl 0867.32015
:[D2] Topological Triviality and Versality for Subgroups of A and K II: Sufficient Conditions and Applications, Nonlinearity 5 (1992) 373-412. | MR 1158379 | Zbl 0747.58014
:[DM] A-codimension and the vanishing topology of discriminants, Invent. Math. 106 (1991) 217-242. | MR 1128213 | Zbl 0772.32023
and :[G] Poincaré polynomial of the space of residue forms on a quasihomogeneous complete intersection, Russ. Math. Surveys 35ii (1980) 241-242. | Zbl 0462.32003
:[Mc] The algebraic theory of modular systems, Cambridge Tracts 19 (1916). | JFM 46.0167.01 | Zbl 0802.13001
:[MO] Isolated Singularities defined by Weighted Homogeneous Polynomials, Topology 9 (1970) 385-393. | MR 293680 | Zbl 0204.56503
and :[No] Semi-regular rings and semi-regular ideals, Quart. J. Math. Oxford, (2), 11 (1960) 81-104. | MR 114835 | Zbl 0112.03001
:[OT] Arrangements and Milnor Fibers (to appear Math. Annalen). | MR 1314585 | Zbl 0813.32033
and :[R] Introduction to Combinatorial Analysis, Wiley, New York, 1958. | MR 96594 | Zbl 0078.00805
:[T] Generalized exponents of a free arrangement of hyperplanes and the Shephard-Todd-Brieskom formula, Invent. Math. 63 (1981) 159-179. | MR 608532 | Zbl 0437.51002
:[W] Weighted Homogeneous Complete Intersections (preprint). | MR 1395187
:[ZS] Commutative Algebra, reprinted as Springer Grad. Text in Math. 28 and 29, Springer Verlag, 1975. | Zbl 0313.13001
and :