@article{CM_1995__97_1-2_135_0, author = {Kraft, James S. and Schoof, Ren\'e}, title = {Computing Iwasawa modules of real quadratic number fields}, journal = {Compositio Mathematica}, volume = {99}, year = {1995}, pages = {135-155}, mrnumber = {1355121}, zbl = {0840.11043}, language = {en}, url = {http://dml.mathdoc.fr/item/CM_1995__97_1-2_135_0} }
Kraft, James S.; Schoof, René. Computing Iwasawa modules of real quadratic number fields. Compositio Mathematica, Tome 99 (1995) pp. 135-155. http://gdmltest.u-ga.fr/item/CM_1995__97_1-2_135_0/
[1]] Computations of Iwasawa invariants and K 2, Compositio Math., 29 (1971), 89-111. | Numdam | MR 384746 | Zbl 0364.12003
:[2] Algebraic Number Theory, Academic Press, London 1967. | MR 215665 | Zbl 0153.07403
and :[3] Calcul du nombre de classes et des unités des extensions abéliennes réelles de Q, Bulletin des Sciences Math. 101 (1977), 97-129. | MR 480423 | Zbl 0359.12007
and :[4] On the Iwasawa invariants of totally real number fields, American J. of Math. 98 (1976), 263-284. | MR 401702 | Zbl 0334.12013
:[5] A note on K2 and the theory of Zp-extensions, American J. of Math. 100 (1978), 1235-1245. | MR 522698 | Zbl 0408.12012
:[6] Iwasawa invariants of CM fields, Journal of Number Theory 32 (1989), 65-77. | MR 1002115 | Zbl 0697.12004
:[7] Class fields of abelian extensions of Q, Invent. Math. 76 (1984), 179-330. | MR 742853 | Zbl 0545.12005
and :[8] Class numbers of Q(cos(2π/p)), in preparation.
:[9] The structure of minus class groups of abelian number fields, 185-204, in C. Goldstein, Séminaire de Théorie de Nombres, Paris 1988-1990, Progress in Math. 91, Birkhäuser 1990. | MR 1104706 | Zbl 0719.11074
:[10] On the Stickelberger ideal and the circular units of an abelian field, Invent. Math. 62 (1980), 181-234. | MR 595586 | Zbl 0465.12001
:[11] Computation of Z3-invariants of real quadratic fields, Math. Comp., to appear. | MR 1333326 | Zbl 0851.11062
:[12] Introduction to Cyclotomic Fields, Graduate Texts in Math. 83, Springer-Verlag, Berlin, Heidelberg, New York 1982. | MR 718674 | Zbl 0484.12001
: