@article{CM_1995__96_1_1_0,
author = {Collingwood, David H.},
title = {Whittaker models, nilpotent orbits and the asymptotics of Harish-Chandra modules},
journal = {Compositio Mathematica},
volume = {99},
year = {1995},
pages = {1-62},
mrnumber = {1323724},
zbl = {0834.22016},
language = {en},
url = {http://dml.mathdoc.fr/item/CM_1995__96_1_1_0}
}
Collingwood, David H. Whittaker models, nilpotent orbits and the asymptotics of Harish-Chandra modules. Compositio Mathematica, Tome 99 (1995) pp. 1-62. http://gdmltest.u-ga.fr/item/CM_1995__96_1_1_0/
[1] and : Primitive ideals and orbital integrals in complex exceptional groups, J. Algebra 80 (1983) 350-382. | MR 691809 | Zbl 0513.22009
[2] and : A multiplicity one theorem for holomorphically induced representations, Math. Z. 192 (1986) 265-282. | MR 840829 | Zbl 0598.22009
[3] and : Multiplicity free categories of highest weight representations I, Comm. Alg. 18 (1990) 947-1032. | MR 1059940 | Zbl 0757.17005
[4] and : Multiplicity free categories of highest weight representations II, Comm. Alg. 18 (1990) 1033-1070. | MR 1059940 | Zbl 0757.17005
[5] and : Enright-Shelton theory and Vogan's problem for generalized principal series, Mem. Amer. Math. Soc. 486 (1993). | MR 1129375 | Zbl 0794.22010
[6] : Lie Algebras and Related Topics. Canadian Math. Soc. Conf. Proc. 5, Providence, 1986. | MR 832193
[7] and : The Kazhdan-Lusztig conjecture for generalized Verma modules, Math. Z. 195 (1987) 581-600. | MR 900346 | Zbl 0624.22010
[8] and : Complex geometry and asymptotics for Harish-Chandra modules of real reductive Lie groups I, Trans. Amer. Math. Soc. 300 (1987) 73-107. | MR 871666 | Zbl 0657.22016
[9] and : Complex geometry and asymptotics for Harish-Chandra modules of real reductive Lie groups II, Invent. Math. 86 (1986) 255-286. | MR 856846 | Zbl 0657.22017
[10] and : Complex geometry and asymptotics for Harish-Chandra modules of real reductive Lie groups III: Estimates on n-homology, J. Algebra 116 (1988) 415-456. | MR 953161 | Zbl 0723.22016
[11] and : Weight filtrations for induced representations of real reductive Lie groups, Adv. Math. 73 (1989) 79-146. | MR 979588 | Zbl 0676.22011
[12] : Harish-Chandra modules with the unique embedding property, Trans. Amer. Math. Soc. 281 (1984) 1-48. | MR 719657 | Zbl 0536.22019
[13] : Representations of rank one Lie groups, Pitman, Boston, 1985. | MR 853731 | Zbl 0647.22007
[14] : Representations of rank one Lie groups II, Mem. Amer. Math. Soc. 387 (1988). | MR 954949 | Zbl 0657.22015
[15] : Jacquet modules for semisimple Lie groups having Verma module filtrations, J. Algebra 136 (1991) 353-375. | MR 1089304 | Zbl 0716.22005
[16] , and : Filtrations on generalized Verma modules for Hermitian symmetric pairs, J. reine angew. Math. 383 (1988) 54-86. | MR 921987 | Zbl 0631.22014
[17] and : Nilpotent Orbits in Semisimple Lie Algebras, Van Nostrand Reinhold, New York, 1993. | MR 1251060 | Zbl 0972.17008
[18] : The annihilators of irreducible Harish-Chandra modules for SU(p, q) and other type An-1 groups, Amer. J. Math. 115 (1993) 305-369. | MR 1216434 | Zbl 0786.22023
[19] and : Whittaker vectors and conical vectors, J. Funct. Anal. 39 (1980) 199-279. | MR 597811 | Zbl 0475.22010
[20] and : Characters, asymptotics and n-homology of Harish-Chandra modules, Acta Math. 151 (1983) 49-151. | MR 716371 | Zbl 0523.22013
[21] : Projective modules in the category Os: Self-duality, Trans. Amer. Math. Soc. 291 (1985) 701-732. | Zbl 0594.17005
[22] : On Whittaker vectors and representation theory, Invent. Math. 48 (1978) 101-184. | MR 507800 | Zbl 0405.22013
[23] : A class of irreducible representations of a Weyl group II, Indag. Math. 44 (1982) 219-226. | MR 662657 | Zbl 0511.20034
[24] and : Singularities of closures of K-orbits on flag manifolds, Inv. Math. 71 (1983) 365-379. | MR 689649 | Zbl 0544.14035
[25] : Whittaker vectors and associated varieties, Invent. Math. 89 (1987) 219-224. | MR 892192 | Zbl 0633.17006
[26] : Whittaker vectors and the Goodman-Wallach operators, Acta Math. 161 (1988) 183-241. | Zbl 0723.22019
[27] : C-∞-Whittaker vectors for complex semisimple Lie groups, wave front sets, and goldie rank polynomial representations, Ann. Scient. Ec. Norm. Sup. 23 (1990) 311-367. | Numdam | Zbl 0760.22017
[28] : C-∞-Whittaker vectors corresponding to a principal nilpotent orbit of a real reductive linear Lie group, and wave front sets, Comp. Math. 82 (1992) 189-244. | Numdam | Zbl 0797.22005
[29] : Classical Bruhat orders and lexicographic shellability, J. Algebra 77 (1982) 104-126. | MR 665167 | Zbl 0486.06002
[30] : Equivalences de certaines de g-modules, C.R. Acad. Sci. Paris 303 (1986). | MR 872544 | Zbl 0623.17005
[31] : Gelfand-Kirillov dimensions for Harish-Chandra modules, Invent. Math. 48 (1978) 75-98. | MR 506503 | Zbl 0389.17002
[32] : Representations of real reductive Lie groups, Birkhäuser, Boston, 1981. | MR 632407 | Zbl 0469.22012
[33] : Irreducible characters of semisimple Lie groups III: proof of the Kazhdan-Lustig conjectures in the integral case, Inv. Math. 71 (1983) 381-417. | MR 689650 | Zbl 0505.22016
[34] : Irreducible characters of semisimple Lie groups IV: character multiplicity duality, Duke Math. J. 49 (1982) 943-1073. | MR 683010 | Zbl 0536.22022