@article{CM_1995__96_1_1_0, author = {Collingwood, David H.}, title = {Whittaker models, nilpotent orbits and the asymptotics of Harish-Chandra modules}, journal = {Compositio Mathematica}, volume = {99}, year = {1995}, pages = {1-62}, mrnumber = {1323724}, zbl = {0834.22016}, language = {en}, url = {http://dml.mathdoc.fr/item/CM_1995__96_1_1_0} }
Collingwood, David H. Whittaker models, nilpotent orbits and the asymptotics of Harish-Chandra modules. Compositio Mathematica, Tome 99 (1995) pp. 1-62. http://gdmltest.u-ga.fr/item/CM_1995__96_1_1_0/
[1] Primitive ideals and orbital integrals in complex exceptional groups, J. Algebra 80 (1983) 350-382. | MR 691809 | Zbl 0513.22009
and :[2] A multiplicity one theorem for holomorphically induced representations, Math. Z. 192 (1986) 265-282. | MR 840829 | Zbl 0598.22009
and :[3] Multiplicity free categories of highest weight representations I, Comm. Alg. 18 (1990) 947-1032. | MR 1059940 | Zbl 0757.17005
and :[4] Multiplicity free categories of highest weight representations II, Comm. Alg. 18 (1990) 1033-1070. | MR 1059940 | Zbl 0757.17005
and :[5] Enright-Shelton theory and Vogan's problem for generalized principal series, Mem. Amer. Math. Soc. 486 (1993). | MR 1129375 | Zbl 0794.22010
and :[6] Lie Algebras and Related Topics. Canadian Math. Soc. Conf. Proc. 5, Providence, 1986. | MR 832193
:[7] The Kazhdan-Lusztig conjecture for generalized Verma modules, Math. Z. 195 (1987) 581-600. | MR 900346 | Zbl 0624.22010
and :[8] Complex geometry and asymptotics for Harish-Chandra modules of real reductive Lie groups I, Trans. Amer. Math. Soc. 300 (1987) 73-107. | MR 871666 | Zbl 0657.22016
and :[9] Complex geometry and asymptotics for Harish-Chandra modules of real reductive Lie groups II, Invent. Math. 86 (1986) 255-286. | MR 856846 | Zbl 0657.22017
and :[10] Complex geometry and asymptotics for Harish-Chandra modules of real reductive Lie groups III: Estimates on n-homology, J. Algebra 116 (1988) 415-456. | MR 953161 | Zbl 0723.22016
and :[11] Weight filtrations for induced representations of real reductive Lie groups, Adv. Math. 73 (1989) 79-146. | MR 979588 | Zbl 0676.22011
and :[12] Harish-Chandra modules with the unique embedding property, Trans. Amer. Math. Soc. 281 (1984) 1-48. | MR 719657 | Zbl 0536.22019
:[13] Representations of rank one Lie groups, Pitman, Boston, 1985. | MR 853731 | Zbl 0647.22007
:[14] Representations of rank one Lie groups II, Mem. Amer. Math. Soc. 387 (1988). | MR 954949 | Zbl 0657.22015
:[15] Jacquet modules for semisimple Lie groups having Verma module filtrations, J. Algebra 136 (1991) 353-375. | MR 1089304 | Zbl 0716.22005
:[16] Filtrations on generalized Verma modules for Hermitian symmetric pairs, J. reine angew. Math. 383 (1988) 54-86. | MR 921987 | Zbl 0631.22014
, and :[17] Nilpotent Orbits in Semisimple Lie Algebras, Van Nostrand Reinhold, New York, 1993. | MR 1251060 | Zbl 0972.17008
and :[18] The annihilators of irreducible Harish-Chandra modules for SU(p, q) and other type An-1 groups, Amer. J. Math. 115 (1993) 305-369. | MR 1216434 | Zbl 0786.22023
:[19] Whittaker vectors and conical vectors, J. Funct. Anal. 39 (1980) 199-279. | MR 597811 | Zbl 0475.22010
and :[20] Characters, asymptotics and n-homology of Harish-Chandra modules, Acta Math. 151 (1983) 49-151. | MR 716371 | Zbl 0523.22013
and :[21] Projective modules in the category Os: Self-duality, Trans. Amer. Math. Soc. 291 (1985) 701-732. | Zbl 0594.17005
:[22] On Whittaker vectors and representation theory, Invent. Math. 48 (1978) 101-184. | MR 507800 | Zbl 0405.22013
:[23] A class of irreducible representations of a Weyl group II, Indag. Math. 44 (1982) 219-226. | MR 662657 | Zbl 0511.20034
:[24] Singularities of closures of K-orbits on flag manifolds, Inv. Math. 71 (1983) 365-379. | MR 689649 | Zbl 0544.14035
and :[25] Whittaker vectors and associated varieties, Invent. Math. 89 (1987) 219-224. | MR 892192 | Zbl 0633.17006
:[26] Whittaker vectors and the Goodman-Wallach operators, Acta Math. 161 (1988) 183-241. | Zbl 0723.22019
:[27] C-∞-Whittaker vectors for complex semisimple Lie groups, wave front sets, and goldie rank polynomial representations, Ann. Scient. Ec. Norm. Sup. 23 (1990) 311-367. | Numdam | Zbl 0760.22017
:[28] C-∞-Whittaker vectors corresponding to a principal nilpotent orbit of a real reductive linear Lie group, and wave front sets, Comp. Math. 82 (1992) 189-244. | Numdam | Zbl 0797.22005
:[29] Classical Bruhat orders and lexicographic shellability, J. Algebra 77 (1982) 104-126. | MR 665167 | Zbl 0486.06002
:[30] Equivalences de certaines de g-modules, C.R. Acad. Sci. Paris 303 (1986). | MR 872544 | Zbl 0623.17005
:[31] Gelfand-Kirillov dimensions for Harish-Chandra modules, Invent. Math. 48 (1978) 75-98. | MR 506503 | Zbl 0389.17002
:[32] Representations of real reductive Lie groups, Birkhäuser, Boston, 1981. | MR 632407 | Zbl 0469.22012
:[33] Irreducible characters of semisimple Lie groups III: proof of the Kazhdan-Lustig conjectures in the integral case, Inv. Math. 71 (1983) 381-417. | MR 689650 | Zbl 0505.22016
:[34] Irreducible characters of semisimple Lie groups IV: character multiplicity duality, Duke Math. J. 49 (1982) 943-1073. | MR 683010 | Zbl 0536.22022
: