@article{CM_1995__95_3_309_0, author = {Singh, Balwant}, title = {The Picard group and subintegrality in positive characteristic}, journal = {Compositio Mathematica}, volume = {99}, year = {1995}, pages = {309-321}, mrnumber = {1318090}, zbl = {0858.13001}, language = {en}, url = {http://dml.mathdoc.fr/item/CM_1995__95_3_309_0} }
Singh, Balwant. The Picard group and subintegrality in positive characteristic. Compositio Mathematica, Tome 99 (1995) pp. 309-321. http://gdmltest.u-ga.fr/item/CM_1995__95_3_309_0/
[1] Algebraic K-Theory, Benjamin, New York, 1968. | MR 249491 | Zbl 0174.30302
,[2] The Picard group of a reduced G-algebra, J. Pure Appl. Algebra 59 (1989) 237-253. | MR 1009681 | Zbl 0697.13004
,[3] On the Picard group of a class of nonseminormal domains, Comm. Algebra 18 (1990) 3263-3293. | MR 1063976 | Zbl 0797.13012
and ,[4] Seminormal graded rings and weakly normal projective varieties, Int. J. Math. Sci. 8 (1985) 231-240. | MR 797823 | Zbl 0593.13001
and ,[5] Commutative Algebra, Benjamin-Cummings, New York (1980). | MR 575344 | Zbl 0441.13001
,[6] Roberts and Balwant Singh, Finiteness of subintegrality, In P. G. Goerss and J. F. Jardine (eds.) Algebraic K-Theory and Algebraic Topology pp. 223-227, Kluwer Acad. Publ. 1993. | MR 1367300 | Zbl 0909.13004
[7] Subintegrality, invertible modules and the Picard group, Compositio Math. 85 (1993) 249-279. | Numdam | Zbl 0782.13006
, and ,[8] On seminormality, J. Algebra 67 (1980) 210-229. | MR 595029 | Zbl 0473.13001
,