@article{CM_1995__95_1_101_0, author = {Boualem, Hassan}, title = {Feuilletages riemanniens singuliers transversalement int\'egrables}, journal = {Compositio Mathematica}, volume = {99}, year = {1995}, pages = {101-125}, mrnumber = {1314698}, zbl = {0854.53031}, language = {fr}, url = {http://dml.mathdoc.fr/item/CM_1995__95_1_101_0} }
Boualem, H. Feuilletages riemanniens singuliers transversalement intégrables. Compositio Mathematica, Tome 99 (1995) pp. 101-125. http://gdmltest.u-ga.fr/item/CM_1995__95_1_101_0/
[B-H] De Rham decomposition theorem for foliated manifolds, Ann. Inst. Fourier 33(2) (1983) 133-198. | Numdam | MR 699494 | Zbl 0487.57010
and ,[Ca] A general description of totally geodesic foliation, Tôhoku Math. J. 38 (1986) 37-55. | MR 826763 | Zbl 0574.57012
,[C2] Variational completeness and K-transversal domains, J. Diff. Geom. 5 (1971) 135-147. | MR 295252 | Zbl 0213.48602
,[C3] A class of variationally complete representations, J. Diff. Geom. 7 (1972) 149-160. | MR 377954 | Zbl 0276.53038
,[D] Polar coordinates induced by actions of compact Lie groups, Trans. Amer. Math. Soc. 288 (1986) 125-137. | MR 773051 | Zbl 0565.22010
,[H-S] Pseudogroupes d'holonomie des feuilletages riemanniens sur des variétés compactes 1-connexes, preprint (1986). | Zbl 0647.57019
and ,[Mo] Riemannian Foliations, Progress in Math. 73. Birkhäuser (1988). | MR 932463 | Zbl 0633.53001
,[M-P] Théorème de slice et holonomie des feuilletages riemanniens singuliers, Ann. Inst. Fourier, Tome XXXVII, fascicule 4 (1987) 207-223. | Numdam | MR 927398 | Zbl 0625.57016
and ,[P-T] Critical point theory and submanifold geometry. Lecture notes in Math, no. 1353, Springer (1988). | MR 972503 | Zbl 0658.49001
and ,[St] Accessible sets, orbits and foliations with singularities, Proc. London Math. Soc. 29 (1974) 699-713. | MR 362395 | Zbl 0342.57015
,[Su1] Orbits of families of vector fields and integrability of distribution, Trans. Amer. Math. Soc. 180 (1973) 171-188. | MR 321133 | Zbl 0274.58002
,[Su2] A generalization of the closed subgroups theorem to quotients of arbitrary manifolds, J. Diff. Geom. 10 (1975) 151-166. | MR 426015 | Zbl 0342.58004
,[Sz1] A generalization of the Weyl group, Acta Math. Hungar 41 (1983) 347-357. | MR 703746 | Zbl 0545.57014
,[Sz2] Orthogonally transversal submanifolds and the generalizations of the Weyl group, Period Math. Hungar 15 (1984) 281-299. | MR 782429 | Zbl 0583.53035
,