@article{CM_1994__94_2_129_0, author = {Hilgert, Joachim and Neeb, Karl-Hermann and Plank, Werner}, title = {Symplectic convexity theorems and coadjoint orbits}, journal = {Compositio Mathematica}, volume = {94}, year = {1994}, pages = {129-180}, mrnumber = {1302314}, zbl = {0819.22006}, language = {en}, url = {http://dml.mathdoc.fr/item/CM_1994__94_2_129_0} }
Hilgert, Joachim; Neeb, Karl-Hermann; Plank, Werner. Symplectic convexity theorems and coadjoint orbits. Compositio Mathematica, Tome 94 (1994) pp. 129-180. http://gdmltest.u-ga.fr/item/CM_1994__94_2_129_0/
[AL92] La convexité de l'application moment d'un groupe de Lie, J. Funct. Anal. 105 (1992), 256-300 | MR 1160080 | Zbl 0763.22006
, and ,[At82] Convexity and commuting hamiltonians, Bull. London Math. Soc. 14 (1982), 1-15 | MR 642416 | Zbl 0482.58013
,[vdB86] A Convexity Theorem for Semisimple Symmetric Spaces, Pacific Journal of Math. 124(1986), 21-55 | MR 850665 | Zbl 0599.22014
,[Bou71 ] "Topologie Générale", Chap. 1-10, Hermann, Paris, 1971 | MR 358652 | Zbl 0249.54001
,[Bou82] Groupes et algèbres de Lie, Chap. 9, Masson, Paris, 1982 | Zbl 0505.22006
,[BJ73] Einführung in die Differentialtopologie ", Springer Verlag, Berlin, Heidelberg, 1973 | MR 358848 | Zbl 0269.57010
, and , "[CDM88] Geometrie du moment, in Sem. Sud-Rhodanien 1988 | MR 1040871
, and ,[tD91] Topologie", de Gruyter, Berlin, New York, 1991 | MR 1150244 | Zbl 0731.55001
, "[Dui83] Convexity and tightness for restrictions of hamiltonian functions to fixed point sets of antisymplectic involution, Trans AMS.275 (1983), 417-429. | MR 678361 | Zbl 0504.58020
,[GS82] Convexity properties of the moment mapping I, Invent. Math. 67 (1982), 491-513 | MR 664117 | Zbl 0503.58017
, and ,[GS84] Symplectic techniques in physics, Cambridge Univ. Press, 1984 | MR 770935 | Zbl 0576.58012
, and ,[Hel78] Differential geometry, Lie groups, and symmetric spaces, Acad. Press, London, 1978 | MR 514561 | Zbl 0451.53038
,[Hil91 ] Vorlesung über symplektische Geometrie, Erlangen, 1991
,[HHL89] Lie Groups, Convex Cones, and Semigroups, Oxford University Press, 1989 | MR 1032761 | Zbl 0701.22001
, , and ,[HiNe93a] Lie semigroups and their applications, Lecture Notes in Math. 1552, Springer Verlag, 1993 | MR 1317811 | Zbl 0807.22001
, and ,[HiNe93b] Non-linear Convexity Theorems and Poisson Lie groups, in preparation
, and ,[Ki84]Convexity properties of the moment mapping III, Invent. Math.77 (1984), 547-552 | MR 759257 | Zbl 0561.58016
,[Ko73] On convexity, the Weyl group and the Iwasawa decomposition, Ann. Sci. Ecole Norm. Sup. 6(1973), 413-455 | Numdam | MR 364552 | Zbl 0293.22019
,[Le80] Konvexe Mengen, Springer Verlag, Heidelberg, 1980 | MR 586235 | Zbl 0442.52001
,[LM87] Symplectic geometry and analytical mechanics, Reidel, Dordrecht, 1987 | Zbl 0643.53002
, and ,[Lo69] Symmetric Spaces I : General Theory", Benjamin, New York, Amsterdam, 1969 | MR 239005 | Zbl 0175.48601
, "[LR91 ] On the nonlinear convexity theorem of Kostant, Journal of the AMS 4(1991), 349-363 | MR 1086967 | Zbl 0785.22019
, and ,[Me81] Hamiltonian systems with a discrete symmetry, J. Diff. Eq. 41(1981), 228-238 | MR 630991 | Zbl 0438.70022
,[Ne92] A convexity theorem for semisimple symmetric spaces, Pac. J. Math., 162 (1994), 305-349. | MR 1251904 | Zbl 0809.53058
,[Ne93a] Invariant subsemigroups of Lie groups, Mem. of the AMS 499, 1993 | MR 1152952 | Zbl 0786.22001
,[Ne93b] On closedness and simple connectedness of coadjoint orbits, Manuscripta Math., 82 (1994), 51-56. | MR 1254139 | Zbl 0815.22004
,[Ne93c] Kähler structures and convexity properties of coadjoint orbits, Forum Math., to appear | MR 1325561 | Zbl 0823.22017
,[Ne93d] Holomorphic representation theory II, Acta Math., to appear. | MR 1294671 | Zbl 0842.22004
,[Ne93e] On the convexity of the moment mapping for a unitary highest weight representation, Journal of Funct. Anal., to appear | Zbl 0829.22012
,[Ne93f] Locally polyhedral sets, unpublished note
,[Ola90] Causal Symmetric Spaces, Mathematica Gottingensis 15, Preprint, 1990
,[Pa84] Determination of invariant convex cones in simple Lie algebras, Arkif för Mat.21(1984), 217-228 | MR 727345 | Zbl 0526.22016
,[Pl92] Konvexität in der symplektischen Geometrie, Diplomarbeit, Erlangen, 1992
,