@article{CM_1994__92_1_61_0, author = {Burgos, Jos\'e Ignacio}, title = {A $C^\infty $ logarithmic Dolbeault complex}, journal = {Compositio Mathematica}, volume = {94}, year = {1994}, pages = {61-86}, zbl = {0826.32007}, language = {en}, url = {http://dml.mathdoc.fr/item/CM_1994__92_1_61_0} }
Burgos, José Ignacio. A $C^\infty $ logarithmic Dolbeault complex. Compositio Mathematica, Tome 94 (1994) pp. 61-86. http://gdmltest.u-ga.fr/item/CM_1994__92_1_61_0/
[D] Théorie de Hodge II, Publ. Math. IHES 40 (1972), 5-57;III, Publ. Math. IHES 44 (1975), 5-77. | Numdam | MR 498551 | Zbl 0237.14003
,[D-G-M-S] Real Homotopy Theory of Kähler Manifolds, Inventiones Math. 29 (1975), 245-274. | MR 382702 | Zbl 0312.55011
, , and ,[G-S] Arithmetic Intersection Theory, Publ. Math. IHES 72 (1990), 93-174. | Numdam | MR 1087394 | Zbl 0741.14012
and ,[G] Local Heights on Curves, in " Arithmetic Geometry", (Edited by G. Cornell and J. H. Silverman), Springer-Verlag, New York, 1986, pp. 327-339. | MR 861983 | Zbl 0605.14027
,[H-P] Cohomologie de Dolbeault à croissance logarithmique à l'infini, Comp. Rend. Acad. Sci. Paris 302 (1986), 307-310. | MR 838581 | Zbl 0597.32025
and ,[L] Introduction to Arakelov Theory, Springer-Verlag, Berlin, 1988. | MR 969124 | Zbl 0667.14001
,[M] Ideals of Differentiable Functions, Oxford University Press, 1966. | MR 212575 | Zbl 0177.17902
,[N] Sur la théorie de Hodge-Deligne, Invent. Math. 90 (1987), 11-76. | MR 906579 | Zbl 0639.14002
,[T] Idéaux de fonctions differentibles, Springer-Verlag, Berlin, 1972. | MR 440598 | Zbl 0251.58001
,