@article{CM_1992__84_1_43_0, author = {Fujiwara, Tsuyoshi}, title = {Varieties of small Kodaira dimension whose cotangent bundles are semiample}, journal = {Compositio Mathematica}, volume = {84}, year = {1992}, pages = {43-52}, mrnumber = {1183561}, zbl = {0763.14015}, language = {en}, url = {http://dml.mathdoc.fr/item/CM_1992__84_1_43_0} }
Fujiwara, Tsuyoshi. Varieties of small Kodaira dimension whose cotangent bundles are semiample. Compositio Mathematica, Tome 84 (1992) pp. 43-52. http://gdmltest.u-ga.fr/item/CM_1992__84_1_43_0/
[1] Invariants symetriques et fibrés vectoriels sur les courbes. Math. Ann. 264 (1983) 423-436. | MR 716258 | Zbl 0504.14011
and ,[2] Semipositive line bundles. J. Fac. Sci. Univ. Tokyo 30 (1983) 353-378. | MR 722501 | Zbl 0561.32012
,[3] ample bundles and their Chern classes. Nagoya Math. J. 43 (1971) 91-116. | MR 296078 | Zbl 0221.14010
, p-[4] Algebraic Geometry. Graduate Texts in Math. 52, Springer, 1977. | MR 463157 | Zbl 0367.14001
,[5] On D-dimensions of algebraic varieties. J. Math. Soc. Japan 23 (1971) 356-373. | MR 285531 | Zbl 0212.53802
,[6] Characterization of abelian varieties. Compositio Math. 43 (1981) 253-276. | Numdam | MR 622451 | Zbl 0471.14022
,[7] On deformations of complex analytic structures I, II. Ann. Math. 67 (1958) 328-466. | MR 112154 | Zbl 0128.16901
,[8] On compact analytic surfaces II. Ann. Math. 77 (1963) 563-626. | Zbl 0118.15802
,[9] An addition formula for Kodaira dimensions of analytic fibre bundles whose fibres are Moišezon manifolds. J. Math. Soc. Japan 25 (1973) 363-371. | MR 322213 | Zbl 0254.32027
and ,[10] Bogomolov's theorem c21 ≤ 4c2. Intl. Symp. on Algebraic Geometry, Kyoto (1977) 623-642. | Zbl 0478.14003
,