Varieties of small Kodaira dimension whose cotangent bundles are semiample
Fujiwara, Tsuyoshi
Compositio Mathematica, Tome 84 (1992), p. 43-52 / Harvested from Numdam
@article{CM_1992__84_1_43_0,
     author = {Fujiwara, Tsuyoshi},
     title = {Varieties of small Kodaira dimension whose cotangent bundles are semiample},
     journal = {Compositio Mathematica},
     volume = {84},
     year = {1992},
     pages = {43-52},
     mrnumber = {1183561},
     zbl = {0763.14015},
     language = {en},
     url = {http://dml.mathdoc.fr/item/CM_1992__84_1_43_0}
}
Fujiwara, Tsuyoshi. Varieties of small Kodaira dimension whose cotangent bundles are semiample. Compositio Mathematica, Tome 84 (1992) pp. 43-52. http://gdmltest.u-ga.fr/item/CM_1992__84_1_43_0/

[1] J. Bertin and P. Teller, Invariants symetriques et fibrés vectoriels sur les courbes. Math. Ann. 264 (1983) 423-436. | MR 716258 | Zbl 0504.14011

[2] T. Fujita, Semipositive line bundles. J. Fac. Sci. Univ. Tokyo 30 (1983) 353-378. | MR 722501 | Zbl 0561.32012

[3] D. Gieseker, p-ample bundles and their Chern classes. Nagoya Math. J. 43 (1971) 91-116. | MR 296078 | Zbl 0221.14010

[4] R. Hartshorne, Algebraic Geometry. Graduate Texts in Math. 52, Springer, 1977. | MR 463157 | Zbl 0367.14001

[5] S. Iitaka, On D-dimensions of algebraic varieties. J. Math. Soc. Japan 23 (1971) 356-373. | MR 285531 | Zbl 0212.53802

[6] Y. Kawamata, Characterization of abelian varieties. Compositio Math. 43 (1981) 253-276. | Numdam | MR 622451 | Zbl 0471.14022

[7] K. Kodaira, On deformations of complex analytic structures I, II. Ann. Math. 67 (1958) 328-466. | MR 112154 | Zbl 0128.16901

[8] K. Kodaira, On compact analytic surfaces II. Ann. Math. 77 (1963) 563-626. | Zbl 0118.15802

[9] I. Nakamura and K. Ueno, An addition formula for Kodaira dimensions of analytic fibre bundles whose fibres are Moišezon manifolds. J. Math. Soc. Japan 25 (1973) 363-371. | MR 322213 | Zbl 0254.32027

[10] M. Reid, Bogomolov's theorem c21 ≤ 4c2. Intl. Symp. on Algebraic Geometry, Kyoto (1977) 623-642. | Zbl 0478.14003