@article{CM_1992__82_1_107_0, author = {Shorey, T. N. and Tijdeman, Robert}, title = {Perfect powers in arithmetical progression (II)}, journal = {Compositio Mathematica}, volume = {84}, year = {1992}, pages = {107-117}, mrnumber = {1154163}, zbl = {0763.11014}, language = {en}, url = {http://dml.mathdoc.fr/item/CM_1992__82_1_107_0} }
Shorey, T. N.; Tijdeman, R. Perfect powers in arithmetical progression (II). Compositio Mathematica, Tome 84 (1992) pp. 107-117. http://gdmltest.u-ga.fr/item/CM_1992__82_1_107_0/
1 A sharpening of the bounds for linear forms in logarithms I, Acta Arith. 21, 117-129 (1972). | MR 302573 | Zbl 0244.10031
,2 Über die Diophantische Gleichung xl + yl = czl, Acta Math. 88, 241-251 (1952). | MR 68560 | Zbl 0048.27503
,3 Note on the product of consecutive integers (II), J. London Math. Soc. 14, 245-249 (1939). | JFM 65.1145.01 | MR 240 | Zbl 0026.38801
,4 On the equation axn - byn = c, Compositio Math. 47, 289-315 (1982). | Numdam | MR 681611 | Zbl 0498.10014
,5 Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 71, 349-366 (1983). | MR 718935 | Zbl 0588.14026
,6 An effective sharpening of the exponent in Liouville's theorem (Russian), Izv. Akad. Nauk SSSR Ser. mat. 35, 973-990 (1971, English trans.: Math. USSR Izv. 5, 985-1002. | MR 289418 | Zbl 0259.10031
,7 Counting solutions of |axr - byr| ≤ h, Quart. J. Math. Oxford (2), 38, 503-513 (1987). | Zbl 0632.10014
,8 Diophantine Equations, Academic Press, London (1969). | MR 249355 | Zbl 0188.34503
,9 Exponential Diophantine Equations, Cambridge Tracts in Mathematics 87 (1986). | MR 891406 | Zbl 0606.10011
and ,10 Perfect powers in arithmetical progression, J. Madras Univ., Section B, 51, 173-180 (1988).
and ,11 Perfect powers in products of terms in an arithmetical progression, Comp. Math. 75, 307-344 (1990). | Numdam | MR 1070417 | Zbl 0708.11021
and ,12 On the least prime in an arithmetic progression, Acta Math. Sinica 29, 826-836 (1986) | MR 888852 | Zbl 0621.10029
,