Decomposing oscillator representations of 𝔬𝔰𝔭(2n/n;) by a super dual pair 𝔬𝔰𝔭(2/1;)×𝔰𝔬(n) *
Nishiyama, Kyo
Compositio Mathematica, Tome 80 (1991), p. 137-149 / Harvested from Numdam
Publié le : 1991-01-01
@article{CM_1991__80_2_137_0,
     author = {Nishiyama, Kyo},
     title = {Decomposing oscillator representations of $\mathfrak {osp}(2n/n; \mathbb {R})$ by a super dual pair $\mathfrak {osp}(2/1; \mathbb {R}) \times \mathfrak {so}(n)^\ast $},
     journal = {Compositio Mathematica},
     volume = {80},
     year = {1991},
     pages = {137-149},
     mrnumber = {1132090},
     zbl = {0741.17002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/CM_1991__80_2_137_0}
}
Nishiyama, Kyo. Decomposing oscillator representations of $\mathfrak {osp}(2n/n; \mathbb {R})$ by a super dual pair $\mathfrak {osp}(2/1; \mathbb {R}) \times \mathfrak {so}(n)^\ast $. Compositio Mathematica, Tome 80 (1991) pp. 137-149. http://gdmltest.u-ga.fr/item/CM_1991__80_2_137_0/

[1] A. Bohm, M. Kmiecik, and L.J. Boya. Representation theory of superconformal quantum mechanics. J. Math. Phys., 29:1163-1170, 1988. | MR 941038 | Zbl 0654.17013

[2] N. Bourbaki. Algèbre, Chap. 9. Hermann, 1959. | Zbl 0102.25503

[3] C. Chevalley. Theory of Lie groups I. Princeton Univ. Press, 1946. | MR 82628 | Zbl 0063.00842

[4] L. Corwin, Y. Ne'Eman, and S. Sternberg. Graded Lie algebras in mathematics and physics (bose-Fermi symmetry). Reviews of Modern Phys., 47:573-603, 1975. | MR 438925 | Zbl 0557.17004

[5] C. Fronsdal, editor. Essays on Supersymmetry. Reidel, 1986. | MR 859048

[6] H. Furutsu and T. Hirai. Representations of Lie super algebras, I. Extensions of representations of the even part. J. Math. Kyoto Univ., 28:695-749, 1988. | MR 981100 | Zbl 0674.17010

[7] R. Howe. On the role of Heisenberg group in harmonic analysis. Bull. AMS, 3:821-843, 1980. | MR 578375 | Zbl 0442.43002

[8] R. Howe. Remarks on classical invariant theory. Trans. AMS, 313:539-570, 1989. | MR 986027 | Zbl 0674.15021

[9] M. Kashiwara and M. Vergne. On the Segal-Shale-Weil representations and harmonic polynomials. Inv. Math., 44:1-47, 1978. | MR 463359 | Zbl 0375.22009

[10] K. Nishiyama. Oscillator representations for orthosymplectic algebras. J. Alg., 129:231-262, 1990. | MR 1037401 | Zbl 0688.17002

[11] K. Nishiyama. Super dual pairs and unitary highest weight modules of orthosymplectic algebras. To appear in Adv. in Math. | Zbl 0802.17002

[12] R. Parthasarathy. Dirac operator and the discrete series. Ann. Math., 96:1-30, 1972. | MR 318398 | Zbl 0249.22003

[13] J.H. Schwartz. Dual resonance theory. Phys. Rep., 8C:269-335, 1973.

[14] S. Sternberg and J.A. Wolf. Hermitian Lie algebras and metaplectic representations. I. Trans. AMS, 238:1-43, 1978. | MR 486325 | Zbl 0386.22010

[15] H. Tilgner. Graded generalizations of Weyl- and Clifford algebras. J. Pure and Appl. Alg., 10:163-168, 1977. | MR 457515 | Zbl 0386.17003

[16] A. Weil. Sur certain groupes d'operateurs unitairs. Acta Math., 111:143-211, 1964. | MR 165033 | Zbl 0203.03305