@article{CM_1989__72_1_115_0, author = {Zeinstra, Rein L.}, title = {Some properties of positive superharmonic functions}, journal = {Compositio Mathematica}, volume = {72}, year = {1989}, pages = {115-120}, mrnumber = {1026331}, zbl = {0706.31004}, language = {en}, url = {http://dml.mathdoc.fr/item/CM_1989__72_1_115_0} }
Zeinstra, Rein L. Some properties of positive superharmonic functions. Compositio Mathematica, Tome 72 (1989) pp. 115-120. http://gdmltest.u-ga.fr/item/CM_1989__72_1_115_0/
1. On the existence of radial boundary values for functions subharmonic in a Lipschitz domain. Indiana Univ. Math. J. 27 (1978) 515-526. | MR 486569 | Zbl 0402.31011
,2. Paths for subharmonic functions. Proc. London Math. Soc. 48 (1984) 401-427. | MR 735222 | Zbl 0541.31001
, and ,3. Un théorème sur les ensembles effilés. Ann. Univ. Grenoble 23 (1948) 139-142. | Numdam | MR 24531 | Zbl 0030.05602
,3a. A comparision between thin sets and generalized Azarin sets. Canad. Math. Bull. 18 (1975) 335-346. | MR 409848 | Zbl 0318.31005
, and ,4. Différentiation of integrals in Rn. Lecture Notes in Maths. 481. Springer-Verl., Berlin 1975. | Zbl 0327.26010
,4a. Estimates for functions that can be represented as a difference of subharmonic functions in a ball (Russian). Teorija Funkcii, Funkcionalnij Analiz i Prilozjenija 14 (Charkov 1971).
,5. Foundations of modern potential theory. Springer-Verl., Berlin 1972. | MR 350027 | Zbl 0253.31001
,6. Boundary behavior of Green potentials. Proc. Am. Math. Soc. 96 (1986) 481-488. | MR 822445 | Zbl 0594.31009
,7. Boundary limits of Green potentials of general order. Proc. Am. Math. Soc. 101 (1987) 131-135. | MR 897083 | Zbl 0659.31007
,8. On the boundary behaviour of Green potentials. Proc. London Math. Soc. 38 (1979) 461-480. | MR 532982 | Zbl 0417.31008
,9. Boundary limits of Green potentials in the unit disc. Arch. Math. 44 (1985) 451-455. | MR 792369 | Zbl 0553.31003
,10. Limiting values of subharmonic functions. Proc. Am. Math. Soc. 1 (1950) 636-647. | MR 39862 | Zbl 0039.32403
,11. Inequalities for the Green function and boundary continuity of the gradient of solutions of elliptic differential equations. Math. Scand. 21 (1967) 17-37. | MR 239264 | Zbl 0164.13101
,12. Content and harmonic measure - an extension of Hall's lemma. Indiana Univ. Math. J. 36 (1987) 403-420. | MR 891782 | Zbl 0639.31004
,13. Boundary limits of Green's potentials along curves. Studia Math. 60 (1977) 137-144. | MR 499241 | Zbl 0354.31002
,