@article{CM_1989__69_2_121_0, author = {Schmidt, Wolfgang M.}, title = {The subspace theorem in diophantine approximations}, journal = {Compositio Mathematica}, volume = {72}, year = {1989}, pages = {121-173}, mrnumber = {984633}, zbl = {0683.10027}, language = {en}, url = {http://dml.mathdoc.fr/item/CM_1989__69_2_121_0} }
Schmidt, Wolfgang M. The subspace theorem in diophantine approximations. Compositio Mathematica, Tome 72 (1989) pp. 121-173. http://gdmltest.u-ga.fr/item/CM_1989__69_2_121_0/
1 On Siegel's lemma. Invent. Math. 73 (1983) 11-32. | MR 707346 | Zbl 0533.10030
and ,2 Some quantitative results related to Roth's Theorem. MacQuarie Math. Reports, Report No. 87-0005, February 1987.
and ,3 An Introduction to the Geometry of Numbers. Springer Grundlehren 99 (1959). | Zbl 0086.26203
,4 Note on a result of Siegel. Acta Arith. 2 (1937) 262-265. | JFM 63.0922.01
,5 Rational approximation to algebraic numbers. Mathematika 2 (1955) 160-167. | MR 77577 | Zbl 0066.29302
and ,6 Dyson's Lemma for polynomials in several variables (and the theorem of Roth). Invent. Math. 78 (1984) 445-490. | MR 768988 | Zbl 0545.10021
and ,7 Upper bounds for the number of solutions of Diophantine equations. Math. Centrum, Amsterdam (1983) 1-127. | MR 726562 | Zbl 0517.10016
,8 Ein Übertragungsprinzip für konvexe Körper. Časopis Pest. Mat. Fys. (1939) 93-102. | JFM 65.0175.02 | MR 1242 | Zbl 0021.10403
,9 On compound convex bodies I. Proc. Lon. Math. Soc. (3) 5, 358-379. | MR 74460 | Zbl 0065.28002
,10 On heights of algebraic subspaces and diophantine approximations. Annals of Math. 83 (1967) 430-472. | MR 213301 | Zbl 0152.03602
,11 Norm form equations. Annals of Math. 96 (1972) 526-551. | MR 314761 | Zbl 0226.10024
,12 The number of solutions of norm form equations. Transactions A.M.S. (to appear). | MR 961596 | Zbl 0693.10014
,13 Diophantine approximation. Springer Lecture Notes in Math. 785, Berlin, Heidelberg, New York (1980). | MR 568710 | Zbl 0421.10019
,