The density problem for infinite dimensional group actions
Klimek, S. ; Kondracki, W. ; Oledzki, W. ; Sadowski, P.
Compositio Mathematica, Tome 68 (1988), p. 3-10 / Harvested from Numdam
Publié le : 1988-01-01
@article{CM_1988__68_1_3_0,
     author = {Klimek, S. and Kondracki, W. and Oledzki, Wies\l aw J. and Sadowski, P.},
     title = {The density problem for infinite dimensional group actions},
     journal = {Compositio Mathematica},
     volume = {68},
     year = {1988},
     pages = {3-10},
     mrnumber = {962500},
     zbl = {0683.58005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/CM_1988__68_1_3_0}
}
Klimek, S.; Kondracki, W.; Oledzki, W.; Sadowski, P. The density problem for infinite dimensional group actions. Compositio Mathematica, Tome 68 (1988) pp. 3-10. http://gdmltest.u-ga.fr/item/CM_1988__68_1_3_0/

1 Bourbaki, N.: Variétés différentielles et analytiques, Fascicule de résultats (§1-§7). Paris: Hermann (1971). | MR 281115 | Zbl 0206.50402

2 Bourguignon, J.P.: Une stratification de l'espace des structures riemanniennes. Comp. Math. 30 (1975) 1-41. | Numdam | MR 418147 | Zbl 0301.58015

3 Bredon, G.E.: Introduction to Compact Transformation Groups. New York: Academic Press (1972). | MR 413144 | Zbl 0246.57017

4 Ebin, D.G.: The manifold of Riemannian metrics. Proc. Symp. Pure Math. Am. Math. Soc. XV (1970) 11-40. | MR 267604 | Zbl 0205.53702

5 Ebin, D.G. and Marsedn, J.E.: Groups of diffeomorphisms and the motion of an incompressible perfect fluid. Ann. of Math. 92 (1970) 102-163. | MR 271984 | Zbl 0211.57401

6 Fisher, A.E.: The Theory of Superspace. Relativity. New York: Plenum Press (1970). | MR 347323

7 Kondracki, W. and Rogulski, J.S.: On the stratification of the orbit space for the action of automorphisms on connections. Diss. Math. 250 (1986). | MR 866577 | Zbl 0614.57025

8 Kondracki, W. and Sadowski, P.: Geometric structure on the orbit space of gauge connections. J. Geom. Phys. 3 (1986) 421-434. | MR 894633 | Zbl 0624.53055

9 Kozak, M.: On the geometry of the configuration space for Kaluza Klein field theory. Warsaw University PhD thesis, to appear.

10 Mitter, P.K. and Viallet, C.M.: On the bundle of connections and the gauge orbit manifold in Yang-Mills theory. Comm. Maths. Phys. 79 (1981) 457-472. | MR 623962 | Zbl 0474.58004

11 Narasimhan, M.S. and Ramadas, T.R.: Geometry of SU(2) gauge fields. Comm. Math. Phys. 67 (1979) 121-136. | MR 539547 | Zbl 0418.53029

12 Palais, R.S.: Embedding of compact differentiable transformation groups in orthogonal representations. J. Math. Mech. 6 (1957) 673-678. | MR 92927 | Zbl 0086.02603

13 Singer, I.M.: Some remarks on the Gribov ambiguity. Comm. Math. Phys. 60 (1978) 7-12. | MR 500248 | Zbl 0379.53009

14 Whitney, H.: Elementary structures of real algebraic varieties. Ann. of Math. 66 (1957) 546-556. | MR 95844 | Zbl 0078.13403