Root systems and hypergeometric functions. II
Heckman, G. J.
Compositio Mathematica, Tome 61 (1987), p. 353-373 / Harvested from Numdam
@article{CM_1987__64_3_353_0,
     author = {Heckman, G. J.},
     title = {Root systems and hypergeometric functions. II},
     journal = {Compositio Mathematica},
     volume = {61},
     year = {1987},
     pages = {353-373},
     zbl = {0656.17007},
     language = {en},
     url = {http://dml.mathdoc.fr/item/CM_1987__64_3_353_0}
}
Heckman, G. J. Root systems and hypergeometric functions. II. Compositio Mathematica, Tome 61 (1987) pp. 353-373. http://gdmltest.u-ga.fr/item/CM_1987__64_3_353_0/

[D] P. Deligne, Équations Differentielles à Points Singuliers Réguliers, LNM 163, Springer Verlag (1970). | MR 417174 | Zbl 0244.14004

[HO] G.J. Heckman and E.M. Opdam, Root systems and hypergeometric functions I, Comp. Math. 64 (1987) 329-352. | Numdam | MR 918416 | Zbl 0656.17006

[Kl] F. Klein, Vorlesungen über die Hypergeometrische Funktion, Grundl. Math. Wissenschaften, Springer (1933). | JFM 59.0375.11 | MR 668700

[KO] M. Kashiwara and T. Oshima, Systems of differential equations with regular singularities and their boundary value problems, Ann of Math. 106 (1977) 154-200. | MR 482870 | Zbl 0358.35073

[vdL] H. V.D. Lek, The homotopy type of complex hyperplane complements, Thesis, Nijmegen (1983).

[M] I.G. Macdonald, Some conjectures for root systems, Siam J. Math. Anal. 13(6) (1982) 988-1007. | MR 674768 | Zbl 0498.17006

[Op] E.M. Opdam, Root systems and hypergeometric functions III, to appear in Comp. Math. | Numdam | MR 949270 | Zbl 0669.33007

[Os] T. Oshima, A Definition of Boundary Values of Solutions of Partial Differential Equations with Regular Singularities, Publ. RIMS, Kyoto Univ 19 (1983) 1203-1230. | MR 723467 | Zbl 0559.35007

[P] J. Plemelj, Problems in the Sense of Riemann and Klein, Interscience Publ. (1964). | MR 174815 | Zbl 0124.28203

[R] B. Riemann, Beiträge zur Theorie der durch die Gauss'sche Reihe F(α, β, y; x) darstellbaren Funktionen, Ges. Abh., 67-87 (1857).

[S] I.G. Sprinkhuizen-Kuyper, Orthogonal polynomials in 2 variables. A further analysis of the polynomials orthogonal over a region bounded by two lines and a parabola. Siam J. Math. Anal. 7(4) (1976) 501-518. | MR 415187 | Zbl 0332.33011

[WW] E.T. Whittaker and G.T. Watson, A Course in Modern Analysis, Cambr. Univ. Press (1927). | JFM 45.0433.02