@article{CM_1987__63_3_273_0,
author = {Lang, Jeffrey},
title = {The factoriality of Zariski rings},
journal = {Compositio Mathematica},
volume = {61},
year = {1987},
pages = {273-290},
mrnumber = {909383},
zbl = {0631.13017},
language = {en},
url = {http://dml.mathdoc.fr/item/CM_1987__63_3_273_0}
}
Lang, Jeffrey. The factoriality of Zariski rings. Compositio Mathematica, Tome 61 (1987) pp. 273-290. http://gdmltest.u-ga.fr/item/CM_1987__63_3_273_0/
1 : Zariski Surfaces. Dissertations Mathematicae 200 (1980). | MR 564489 | Zbl 0523.14027
2 : Some geometric applications of a dinerential equation in characteristic p > 0 to the theory of algebraic surfaces. Contemp. Math. A.M.S. 13 (1982). | Zbl 0561.14018
3 : Picard groups of Zariski Surfaces I. Comp. Math. 54 (1985) 3-86. | Numdam | MR 782383 | Zbl 0624.14021
4 and : Picard groups of Zariski Surfaces II. Comp. Math. 54 (1985) 36-39. | Zbl 0624.14021
5 : The Divisor Class Group of a Krull Domain. Springer-Verlag, New York (1973). | MR 382254 | Zbl 0256.13001
6 : Combinatorial Identities. Morgantown, W. Va (1972). | MR 354401 | Zbl 0241.05011
7 : Algebraic Geometry. Springer-Verlag, New York (1977). | MR 463157 | Zbl 0367.14001
8 : Commutative Rings. Allyn and Bacon, Boston (1970). | MR 254021 | Zbl 0203.34601
9 : An example related to the affine theorem of Castelnuovo. Michigan Math. J. 28 (1981). | MR 629369 | Zbl 0495.14021
10 : The divisor classes of the hypersurfaces zpn = G(x1, ..., xm) in characteristic p > 0. Trans A.M.S. 278 2 (1983). | MR 701514 | Zbl 0528.14018
11 : The divisor class group of the surface zpn = G(x, y) over fields of characteristic p > 0. J. Alg. 84, 2 (1983). | MR 723398 | Zbl 0528.14017
12 : The divisor classes of the surface zp = G(x, y), a programmable problem. J. Alg. 100, (1986).
13 : Locally factorial generic Zariski surfaces are factorial. J. Alg., to appear. | Zbl 0643.14023
14 : Local Rings. John Wiley & Sons, Inc. (1962). | MR 155856 | Zbl 0123.03402
15 : Field Theory. Marcel Dekker, Inc. (1977). | MR 469887 | Zbl 0366.12001
16 and : A formula for the Cartier operator on plane algebraic curves. Submitted for publication.
17 : Lectures on Unique Factorization Domains. Tata Lecture Notes (1964). | MR 214579 | Zbl 0184.06601
18 : Algebraic Curves. Princeton University Press, Princeton, (1950). | MR 33083 | Zbl 0039.37701