The average orders of Hooley’s Δ r -functions, II
Hall, R. R. ; Tenenbaum, G.
Compositio Mathematica, Tome 60 (1986), p. 163-186 / Harvested from Numdam
Publié le : 1986-01-01
@article{CM_1986__60_2_163_0,
     author = {Hall, R. R. and Tenenbaum, G\'erald},
     title = {The average orders of Hooley's $\Delta \_r$-functions, II},
     journal = {Compositio Mathematica},
     volume = {60},
     year = {1986},
     pages = {163-186},
     zbl = {0614.10037},
     language = {en},
     url = {http://dml.mathdoc.fr/item/CM_1986__60_2_163_0}
}
Hall, R. R.; Tenenbaum, G. The average orders of Hooley’s $\Delta _r$-functions, II. Compositio Mathematica, Tome 60 (1986) pp. 163-186. http://gdmltest.u-ga.fr/item/CM_1986__60_2_163_0/

[1] P. Erdös and R.R. Hall: The propinquity of divisors. Bull. London Math. Soc., 11 (1979) 304-307. | MR 554398 | Zbl 0421.10027

[2] R.R. Hall: The propinquity of divisors. J. London Math. Soc. (2) 19 (1979) 35-40. | MR 527732 | Zbl 0407.10036

[3] R.R. Hall: Hooley's Δr-functions when r is large. Michigan Math. Journal (to appear). | Zbl 0591.10039

[4] R.R. Hall and G. Tenenbaum: On the average and normal orders of Hooley's Δ-function. J. London Math. Soc. (2) 25 (1982) 392-406. | Zbl 0489.10046

[5] R.R. Hall and G. Tenenbaum: The average orders of Hooley's Δ r-functions. Mathematika 31 (1984) 98-109. | Zbl 0552.10027

[6] C. Hooley: On a new technique and its applications to the theory of numbers. P. London Math. Soc. (3) 38 (1979) 115-151. | MR 520975 | Zbl 0394.10027

[7] H. Maier and G. Tenenbaum: On the set of divisors of an integer. Invent. Math. 76 (1984) 121-128. | MR 739628 | Zbl 0536.10039

[8] H. Maier and G. Tenenbaum: On the normal concentration of divisors. J. London Math. Soc. (to appear). | Zbl 0576.10034

[9] G. Tenenbaum: Sur la concentration moyenne des diviseurs. Comment. Math. Helvitici (to appear). | MR 814148 | Zbl 0581.10020