@article{CM_1986__58_3_371_0, author = {Van Dijk, G. and Poel, M.}, title = {The Plancherel formula for the pseudo-riemannian space $\mathrm {SL}(n, \mathbb {R}) / \mathrm {GL}(n - 1, \mathbb {R})$}, journal = {Compositio Mathematica}, volume = {60}, year = {1986}, pages = {371-397}, mrnumber = {846911}, zbl = {0593.43009}, language = {en}, url = {http://dml.mathdoc.fr/item/CM_1986__58_3_371_0} }
Van Dijk, G.; Poel, M. The Plancherel formula for the pseudo-riemannian space $\mathrm {SL}(n, \mathbb {R}) / \mathrm {GL}(n - 1, \mathbb {R})$. Compositio Mathematica, Tome 60 (1986) pp. 371-397. http://gdmltest.u-ga.fr/item/CM_1986__58_3_371_0/
[1] Représentations de groupes localement compacts, Lecture Notes in Mathematics, Vol. 276. Springer, Berlin etc. (1972). | MR 414779 | Zbl 0242.22007
:[2] Vecteurs différentiables dans les représentations unitaires des groupes de Lie, Lecture Notes in Mathematics, Vol. 514, 20-33. Springer, Berlin etc. (1976). | Numdam | MR 460541 | Zbl 0327.22011
:[3] Higher Trancendental Functions, Vol. I. New York: McGraw-Hill (1953). | Zbl 0051.30303
et al.:[4] Higher Transcendental Functions, Vol. II. New York: McGraw-Hill (1953). | Zbl 0052.29502
et al.:[5] Distributions sphériques sur les espaces hyperboliques, J. Math. Pures Appl. 58 (1979) 369-444. | MR 566654 | Zbl 0436.43011
:[6] Discrete series characters on non-Riemannian symmetric spaces, thesis, Harvard University, Cambridge (Mass.) (1984).
:[7] Spherical distributions on the pseudo-Riemannian space SL(n, R)/GL(n-1, R), Report no 23, University of Leiden, 1984 (to appear in J. Funct. Anal.). | MR 852659
and[8] 24 (1964) 227-243. | MR 177065 | Zbl 0139.07801
and : Universelle umhüllende Algebra einer Lokal kompakten Gruppe und ihre selbstadjungierte Darstellungen. Anwendungen. Studia Math.,[9] The Plancherel formula for the pseudo-Riemannian space SL(3, R)/GL(2, R). Sibirsk Math. J. 23 (1982) 142-151 (Russian). | Zbl 0515.22012
:[10] Analytic vectors. Ann. of Math. 70 (1959) 572-615. | MR 107176 | Zbl 0091.10704
:[11] Analysis on real hyperbolic spaces. J. Funct. Anal. 30 (1978) 448-477. | MR 518343 | Zbl 0395.22014
:[12] The theorem of Bochner-Schwartz-Godement for generalized Gelfand pairs. In: K.D. Bierstedt and B. Fuchsteiner (eds.), Functional Analysis: Surveys and recent results III, Elseviers Science Publishers B.V. (North Holland) (1984). | MR 761388 | Zbl 0564.43008
:[13] Invariant differential operators on a semisimple symmetric space and finite multiplicities in a Plancherel formula. Report PM-R 8409, Centre for Mathematics and Computer Science, Amsterdam (1984).
:[14] On generalized Gelfand pairs. Proc. Japan Acad. Sc. 60, Ser. A(1984) 30-34 | MR 751755 | Zbl 0555.43010
: