@article{CM_1986__58_1_73_0, author = {Herb, Rebecca and Wolf, Joseph A.}, title = {Rapidly decreasing functions on general semisimple groups}, journal = {Compositio Mathematica}, volume = {60}, year = {1986}, pages = {73-110}, mrnumber = {834048}, zbl = {0587.22006}, language = {en}, url = {http://dml.mathdoc.fr/item/CM_1986__58_1_73_0} }
Herb, Rebecca A.; Wolf, Joseph A. Rapidly decreasing functions on general semisimple groups. Compositio Mathematica, Tome 60 (1986) pp. 73-110. http://gdmltest.u-ga.fr/item/CM_1986__58_1_73_0/
[1] Asymptotic behavior of matrix coefficients of admissible representations, Duke Math . J. 49 (1982) 869-930. | MR 683007 | Zbl 0524.22014
and :[2] Invariant eigendistributions on a semisimple Lie group. TAMS 119 (1965) 457-508. | MR 180631 | Zbl 0199.46402
: (a)(b) Discrete series for semisimple Lie groups, I. Acta Math. 113 (1965) 241-318. | MR 219665 | Zbl 0152.13402
(c) Discrete series for semisimple Lie groups, II. Acta Math. 116 (1966) 1-111. | MR 219666 | Zbl 0199.20102
(d) Harmonic analysis on real reductive groups, I. J. Funct. Anal. 19 (1975) 104-204. | MR 399356 | Zbl 0315.43002
(e) Harmonic analysis on real reductive groups, II. Inv. Math. 36 (1976) 1-55. | MR 439993 | Zbl 0341.43010
(f) Harmonic analysis on real reductive groups, III. Ann. of Math. 104 (1976) 117-201. | MR 439994 | Zbl 0331.22007
[3] Discrete series characters and Fourier inversion on semisimple real Lie groups. TAMS 277 (1983) 241-261. | MR 690050 | Zbl 0516.22007
:[4] The Plancherel theorem for general semisimple groups. Comp. Math. 57 (1986), 271-355. | Numdam | MR 829325 | Zbl 0587.22005
and :[5] Harmonic Analysis on Semisimple Lie Groups, Vol. II, Springer-Verlag, Berlin and New York (1972). | Zbl 0265.22021
:[6] Unitary representations on partially holomorphic cohomology spaces. Mem. AMS 138 (1974). | Zbl 0288.22022
: