@article{CM_1986__58_1_45_0, author = {Moerdijk, Ieke}, title = {Continuous fibrations and inverse limits of toposes}, journal = {Compositio Mathematica}, volume = {60}, year = {1986}, pages = {45-72}, mrnumber = {834047}, zbl = {0587.18003}, language = {en}, url = {http://dml.mathdoc.fr/item/CM_1986__58_1_45_0} }
Moerdijk, Ieke. Continuous fibrations and inverse limits of toposes. Compositio Mathematica, Tome 60 (1986) pp. 45-72. http://gdmltest.u-ga.fr/item/CM_1986__58_1_45_0/
[1] Atomic toposes. J. Pure and Applied Algebra 17 (1980) 1-24. | MR 560782 | Zbl 0429.18006
and :[2] Molecular toposes. J. Pure and Applied Algebra 17 (1980) 27-152. | MR 567064 | Zbl 0436.18002
and :[3] Grothendieck toposes have boolean points: a new proof. Comm. in Algebra 4 (1976) 723-729. | MR 414658 | Zbl 0358.18011
:[4] All topoi are localic, or Why permutation models prevail, unpublished typescript (1979).
:[5] Théorie des topos et cohomologie étale des Schémas, SGA 4(2), Exposé VI. Springer Lecture notes 270 (1972). | MR 463174 | Zbl 0237.00012
and :[6] On choice sequences determined by spreads. J. of Symbolic Logic 49 (1984) 908-916. | MR 758942 | Zbl 0587.03044
and :[7] An extension of the Galois theory of Grothendieck. Memoir Amer. Math. Soc. 309 (1984). | MR 756176 | Zbl 0541.18002
and :[8] Open maps of toposes. Manuscripta Math. 31 (1980) 217-247. | MR 576498 | Zbl 0433.18002
:[9] Factorisation theorems for geometric morphisms, I. Cah. top. et géom. diff. 22 (1981) 3-17. | Numdam | MR 609154 | Zbl 0454.18007
:[10] Smooth spaces versus continuous spaces in models for SDG. J. Pure and Applied Algebra 32 (1984) 143-176. | MR 741963 | Zbl 0535.18003
and :