@article{CM_1986__57_3_383_0, author = {Dilcher, Karl}, title = {On a diophantine equation involving quadratic characters}, journal = {Compositio Mathematica}, volume = {60}, year = {1986}, pages = {383-403}, mrnumber = {829328}, zbl = {0584.10008}, language = {en}, url = {http://dml.mathdoc.fr/item/CM_1986__57_3_383_0} }
Dilcher, Karl. On a diophantine equation involving quadratic characters. Compositio Mathematica, Tome 60 (1986) pp. 383-403. http://gdmltest.u-ga.fr/item/CM_1986__57_3_383_0/
[1] Character analogues of the Poisson and Euler-MacLaurin summation formulas with applications, J. Number Theory 7 (1975) 413-445. | MR 382187 | Zbl 0316.10023
:[2] On the Euler and Bernoulli polynomials, J. Reine Angew. Math. 234 (1969) 45-64. | MR 242790 | Zbl 0167.35401
:[3] On S-integral solutions of the equation ym = f(x), Acta Math. Hung. 44 (1984) 133-139. | MR 759041 | Zbl 0552.10009
:[4] A conjecture concerning the Euler numbers, Amer. Math. Monthly 69 (1962) 538-540. | MR 1531734 | Zbl 0105.26403
:[5] Irreducibilty of generalized Bernoulli polynomials, preprint. | Zbl 0558.10012
:[6] Asymptotic behaviour of Bernoulli, Euler, and generalzed Bernoulli polynomials, to appear in J. Approx. Theory. | MR 881502 | Zbl 0609.10008
:[7] Algorithms for localizing roots of a polynomial and the Pisot Vijayaraghavan numbers, Pacific J. Math. 74 (1978) 47-56. | MR 480414 | Zbl 0381.12001
:[8] Generalized Bernoulli numbers, generalized irregular primes, and class numbers, Ann. Univ. Turku, Ser. AI, 178 (1979) 72 p. | MR 533377 | Zbl 0403.12010
:[9] On the equation 1k + 2k + ··· + xk = yz, Acta Arith. 37 (1980), 233-240. | MR 598878 | Zbl 0365.10014
, and :[10] Lectures on p-acid L-functions, Princeton University Press (1972). | MR 360526 | Zbl 0236.12001
:[11] Computation of tangent. Euler, and Bernoulli numbers. Math. Comp. 21 (1967) 663-688. | MR 221735 | Zbl 0178.04401
:[12] Diophantine equations, Academic Press, London (1969). | MR 249355 | Zbl 0188.34503
:[13] Vorlesungen über Differenzenrechung, Springer Verlag, Berlin (1924).
:[14] Aufgaben und Lehrsätze aus der Analysis, Springer Verlag, Berlin (1925). | JFM 51.0173.01
and :[15] The equation 1p + 2p + 3p + ··· + np = mq, Acta Math. 95 (1956) 155-189. | Zbl 0071.03702
:[16] On the diophantine equation 1k + 2k + ··· + xk + R(x) = yz, Acta Math. 143 (1979) 1-8. | MR 523394 | Zbl 0426.10019
, and :