The cokernel of the operator /x n acting on a 𝒟 n -module, II
Van den Essen, Arno
Compositio Mathematica, Tome 56 (1985), p. 259-269 / Harvested from Numdam
Publié le : 1985-01-01
@article{CM_1985__56_2_259_0,
     author = {Van den Essen, Arno},
     title = {The cokernel of the operator $\partial / \partial x\_n$ acting on a $\mathcal {D}\_n$-module, II},
     journal = {Compositio Mathematica},
     volume = {56},
     year = {1985},
     pages = {259-269},
     zbl = {0579.58040},
     language = {en},
     url = {http://dml.mathdoc.fr/item/CM_1985__56_2_259_0}
}
Van den Essen, Arno. The cokernel of the operator $\partial / \partial x_n$ acting on a $\mathcal {D}_n$-module, II. Compositio Mathematica, Tome 56 (1985) pp. 259-269. http://gdmltest.u-ga.fr/item/CM_1985__56_2_259_0/

[1] J.-E. Björk: Rings of Differential Operators, Mathematical library series. North-Holland (1979). | MR 549189 | Zbl 0499.13009

[2] A. Van Den Essen: Fuchsian modules. Thesis, Catholic University Nijmegen, the Netherlands (1979).

[3] A. Van Den Essen: Le Noyau de l'opérateur ∂/∂x n agissant sur un Dn-module. C.R. Acad. Sci. Paris t. 288 (1979) 687-690. | Zbl 0405.35073

[4] A. Van Den Essen: Un D-module holonome tel que le conoyau de l'opérateur ∂/∂xn soit non-holonome. C.R. Acad. Sci. Paris t. 295 (1982) 455-457. | Zbl 0516.58039

[5] A. Van Den Essen: Le conoyau de l'opérateur ∂/∂ n agissant sur un Dn-module holonome. C.R. Acad. Sci., Paris, t. 296 (1983) 903-906. | Zbl 0536.58036

[6] O. Gabber: Am. Journal of Math. 103 (1981) 445-468. | MR 618321 | Zbl 0492.16002

[7] M. Kashiwara: On the maximally overdetermined systems of linear differential equations. I. Publ., R.I.M.S., Kyoto University 10, (1975) 563-579. | MR 370665 | Zbl 0313.58019

[8] M. Kashiwara: On the holonomic systems of linear differential equations. II. Inventiones Math. 49 (1978) 121-135. | MR 511186 | Zbl 0401.32005

[9] H. Matsumura: Commutative Algebra. New York: W.A. Benjamin, Inc. (1970). | MR 266911 | Zbl 0211.06501