@article{CM_1985__56_2_153_0, author = {Adachi, Toshiaki and Sunada, Toshikazu}, title = {Energy spectrum of certain harmonic mappings}, journal = {Compositio Mathematica}, volume = {56}, year = {1985}, pages = {153-170}, mrnumber = {809864}, zbl = {0578.58009}, language = {en}, url = {http://dml.mathdoc.fr/item/CM_1985__56_2_153_0} }
Adachi, Toshiaki; Sunada, Toshikazu. Energy spectrum of certain harmonic mappings. Compositio Mathematica, Tome 56 (1985) pp. 153-170. http://gdmltest.u-ga.fr/item/CM_1985__56_2_153_0/
[1] Geometry of Manifold, Academic Press: New York and London (1964). | MR 169148 | Zbl 0132.16003
and :[2] Gromov's almost flat manifolds, Asterisque 81 (1981). | MR 619537 | Zbl 0459.53031
and :[3] Harmonic mappings of Riemannian manifold, Amer. J. Math. 86 (1964) 109-160. | MR 164306 | Zbl 0122.40102
and :[4] A report on harmonic maps, Bull. London Math. Soc. 10 (1978) 1-68. | MR 495450 | Zbl 0401.58003
and :[5] Inégalité isoperimetrique sur les variétés compactes sans bord, to appear.
:[6] On the length spectra of certain compact manifolds of negative curvature J. Diff. Geom. 12 (1977) 403-424. | MR 650997 | Zbl 0365.53016
:[7] Structures metriques sur les variétés riemannienes (rédigé par J. Lafontaine et P. Pansu), Cedic, Paris (1982). | MR 682063 | Zbl 0509.53034
:[8] On homotopic harmonic maps, Can. J. Math. 19 (1967) 673-687. | MR 214004 | Zbl 0148.42404
:[9] Equivariant Morse theory and closed geodesics, preprint. | MR 739783 | Zbl 0561.58007
:[10] Über die Isometriegruppe einer kompakten Mannigfaltigkeit mit negativer Krümmung, Helv. Phys. Acta 45 (1972) 277-288.
:[11] Über die Isometriegruppe bei kompakten Mannigfaltigkeiten negativer Krümmung, Comment. Math. Helv. 48 (1973) 14-30. | MR 328819 | Zbl 0258.53040
:[12] Finiteness and rigidities theorem for holomorphic mappings, Michigan Math. J. 28 (1981) 289-295. | MR 629361 | Zbl 0459.32011
, and :[13] Foundations of Differential Geometry, John Wiley & Sons: New Nork (1963). | Zbl 0119.37502
and :[14] Harmonic mappings of uniform bounded dilatation, Topology 16 (1977) 199-201. | MR 448412 | Zbl 0343.53029
:[15] On the Sobolev constant and the p-spectrum of a compact Riemannian manifolds, Ann. scient. Éc. Norm. Sup. 13 (1980) 451-469. | Numdam | MR 608289 | Zbl 0466.53023
:[16] The isometry groups of compact manifolds with non-positive curvature, Proc. Japan Acad. 51 (1975) 790-794. | MR 397616 | Zbl 0341.53026
:[17] Topological entropy for geodesic flows, Ann. of Math. 110 (1979) 567-573. | MR 554385 | Zbl 0426.58016
:[18] Applications of ergodic theory to the investigation of manifolds of negative curvature, Funct. Analy. and Appl. 3 (1969) 335-336. | MR 257933 | Zbl 0207.20305
:[19] Minimal varieties and harmonic maps in tori, Comment. Math. Helu. 50 (1975) 249-265. | MR 390974 | Zbl 0326.53055
and :[20] Finiteness of the family of rational and meromorphic mappings into algebraic varieties, Amer. J. Math. 104 (1982) 887-900. | MR 667540 | Zbl 0502.14002
and :[21] The Ahlfors-Schwarz lemma in several complex variables, Comment. Math. Helv. 55 (1980) 547-558. | MR 604712 | Zbl 0484.53053
:[22] Compact group actions and the topology of manifolds with non-positive curvature, Topology 18 (1979) 361-380. | MR 551017 | Zbl 0424.58012
and :[23] Holomorphic mappings into a compact quotient of symmetric bounded domain, Nagoya Math. J. 64 (1976) 159-175. | MR 419848 | Zbl 0352.32030
:[24] Rigidity of certain harmonic mappings, Invent. Math. 51 (1979) 297-307. | MR 530636 | Zbl 0418.31005
:[25] Tchebotarev's density theorem for closed geodesics in a compact locally symmetric space of negative curvature, preprint.
:[26] Geodesic flows and geodesic random walks, to appear in Advanced Studies in Pure Math. 3. | MR 758647 | Zbl 0599.58037
:[27] Morse theory by perturbation methods with applications to harmonic maps, Trans. AMS. 267 (1981) 569-583. | MR 626490 | Zbl 0509.58012
:[28] On the orders of the automorphism groups of certain projective manifolds, Progress in Math. 14 (1981) 145-158. | MR 642855 | Zbl 0483.32016
and ,[29] An analogue of the prime number theorem for closed orbits of Axion A flows, preprint. | MR 727704 | Zbl 0537.58038
and :[30] Totally geodesic maps, J. Differential Geom. 4 (1970) 73-79. | MR 262984 | Zbl 0194.52901
: