@article{CM_1985__55_2_185_0, author = {Daverman, R. J.}, title = {Decompositions of manifolds into codimension one submanifolds}, journal = {Compositio Mathematica}, volume = {56}, year = {1985}, pages = {185-207}, mrnumber = {795714}, zbl = {0593.57005}, language = {en}, url = {http://dml.mathdoc.fr/item/CM_1985__55_2_185_0} }
Daverman, R. J. Decompositions of manifolds into codimension one submanifolds. Compositio Mathematica, Tome 56 (1985) pp. 185-207. http://gdmltest.u-ga.fr/item/CM_1985__55_2_185_0/
[1] The locally flat approximation of cell-like embedding relations. Ann. of Math. 109(2) (1979) 61-86. | MR 519353 | Zbl 0405.57007
and :[2] Cellular decompositions of 3-manifolds that yield 3-manifolds. Memoirs Amer. Math. Soc. 107 (1970). | MR 413104 | Zbl 0221.57003
:[3] E3 does not contain uncountably many mutually exclusive surfaces. Bull. Amer. Math. Soc. 63 (1957) 404. Abstract # 60-801t.
:[4] A surface is tame if its complement is 1-ULC. Trans. Amer. Math. Soc. 101 (1961) 294-305. | MR 131265 | Zbl 0109.15406
:[5] Locally flat embeddings of topological manifolds. Ann. of Math. 75(2) (1962) 331-341. | MR 133812 | Zbl 0201.56202
:[6] The monotone union of open n-cells is an open n-cell. Proc. Amer. Math. Soc. 12 (1961) 812-814. | MR 126835 | Zbl 0103.39305
:[7] Concerning uncountable families of n-cells in En. Michigan Math. J. 15 (1968) 477-479. | MR 238285 | Zbl 0175.20603
:[8] The equivalence of local flatness and local 1-connectedness for embeddings of (n-1)-dimensional manifolds in n-dimensional manifolds. Mat. Sb. 75(133) (1973) 279-286 [ = Math USSR Sb. 20 (1973) 297-304]. | MR 334222 | Zbl 0286.57005
:[9] Counting topological manifolds. Topology 9 (1970) 149-151. | MR 256399 | Zbl 0199.58403
and :[10] A topological h-cobordism theorem for n > 5. Illinois J. Math. 11 (1967) 300-309. | MR 212808 | Zbl 0146.45201
:[11] Approximate fibrations - a geometric perspective, in Shape Theory and Geometric Topology. S. Mardešić and J. Segal (ed.), Lecture Notes in Math., vol. 870, Berlin: Springer-Verlag (1981) 37-47. | MR 643521 | Zbl 0493.57006
:[12] Approximate fibrations. Rocky Mountain J. Math. 7 (1977) 275-288. | MR 442921 | Zbl 0367.55019
and :[13] Mappings from S3 to S2 whose point inverses have the shape of a circle. Gen. Topology and its Appl. 9 (1979) 239-246. | Zbl 0417.54014
and :[14] Locally nice codimension one manifolds are locally flat. Bull. Amer. Math. Soc. 79 (1973) 410-413. | MR 321095 | Zbl 0256.57005
:[15] Every crumpled n-cube is a closed n-cell-complement. Michigan Math. J. 24 (1977) 225-241. | MR 488066 | Zbl 0376.57007
:[16] Embedding phenomena based upon decomposition theory: wild Cantor sets satisfying strong homogeneity properties. Proc. Amer. Math. Soc. 75 (1979) 177-182. | MR 529237 | Zbl 0407.57011
:[17] Some wild cells and spheres in three-dimensional space. Ann. of Math. 49 (2) (1948) 979-990. | MR 27512 | Zbl 0033.13602
and :[18] Some results on surfaces in 3-manifolds, in Studies in Modem Topology. P.J. Hilton (ed.), MAA Studies in Mathematics, Vol. 5, Prentice Hall, Englewood Cliffs, N.J. (1968) 39-98. | MR 224071 | Zbl 0194.24902
:[19] The sum of real cube and a crumpled cube is S3. Notices Amer. Math. Soc. 10 (1963) 666. Abstract # 607-17. See also errata 11 (1964) 152.
:[20] Approximating approximate fibrations by fibrations. Can. J. Math. 29 (1977) 897-913. | MR 500990 | Zbl 0366.55006
:[21] Surfaces embedded in M2 X S1. Can. J. Math. 22 (1970) 553-568. | MR 267596 | Zbl 0205.53501
:[22] Manifolds accepting codimension one sphere-like decompositions, preprint. | Zbl 0582.57009
:[23] Some results on crumpled cubes. Trans. Amer. Math. Soc. 118 (1965) 534-549. | MR 178460 | Zbl 0134.43002
:[24] Neighborhoods of surfaces in 3-manifolds. Michigan Math. J. 14 (1967) 161-170. | MR 212778 | Zbl 0148.17702
:[25] Ends of Maps III: dimensions 4 and 5. Preprint Series 1982-83, No. 4, Aarhus Universitet Matematisk Institute. See also Addition to the same, preprint. | MR 679069
:[26] Infinite simple homotopy types. Indag. Math. 32 (1970) 479-495. | MR 287542 | Zbl 0203.56002
:[27] Approximating cellular maps by homeomorphisms. Topology 11 (1973) 271-294. | MR 295365 | Zbl 0216.20101
:[28] Algebraic Topology. New York: McGraw-Hill Book Co (1966). | MR 210112 | Zbl 0145.43303
: