@article{CM_1984__53_1_91_0, author = {Sibner, L. M.}, title = {Removable singularities of Yang-Mills fields in $R^3$}, journal = {Compositio Mathematica}, volume = {53}, year = {1984}, pages = {91-104}, mrnumber = {762308}, zbl = {0552.58037}, language = {en}, url = {http://dml.mathdoc.fr/item/CM_1984__53_1_91_0} }
Sibner, L. M. Removable singularities of Yang-Mills fields in $R^3$. Compositio Mathematica, Tome 53 (1984) pp. 91-104. http://gdmltest.u-ga.fr/item/CM_1984__53_1_91_0/
[1] Stability and isolation phenomena for Yang-Mills fields. Comm. Math. Phys. 79 (1981) 189-203. | MR 612248 | Zbl 0475.53060
and :[2] Opérateur de courbure et laplacien des formes différentielles d'une variété Riemannienne. J. Math. Pures et Appl. 54 (1975) 259-284. | MR 454884 | Zbl 0316.53036
and :[3] Euclidean Yang-Mills and related equations, Bifurcation Phenomena in Math. Phys. and Related Topics, 243-267, D. Reidel (1980). | MR 580301
:[4] Vortices and Monopoles, Progress in Physics 2. Boston: Birkhäuser (1980). | MR 614447 | Zbl 0457.53034
and :[5] Multiple integrals in the calculus of variations. New York: Springer (1966). | MR 202511 | Zbl 0142.38701
:[6] Gauge theories on four dimensional manifolds. Ph. D. thesis, Stanford (1980).
:[7] Removable singularities in Yang-Mills fields. Comm. Math. Phys. 83 (1982) 11-29. | MR 648355 | Zbl 0491.58032
:[8] Connections with Lp bounds on curvature. Comm. Math. Phys. 83 (1982) 31-42. | MR 648356 | Zbl 0499.58019
:[9] Removable singularities of coupled Yang-Mills fields in R3, Comm. Math. Phys. 93 (1984) 1-17. | MR 737461 | Zbl 0552.35028
: