@article{CM_1984__52_1_57_0, author = {Stam, A. J.}, title = {Expectation and variance of the volume covered by a large number of independent random sets}, journal = {Compositio Mathematica}, volume = {53}, year = {1984}, pages = {57-83}, mrnumber = {742698}, zbl = {0546.60015}, language = {en}, url = {http://dml.mathdoc.fr/item/CM_1984__52_1_57_0} }
Stam, A. J. Expectation and variance of the volume covered by a large number of independent random sets. Compositio Mathematica, Tome 53 (1984) pp. 57-83. http://gdmltest.u-ga.fr/item/CM_1984__52_1_57_0/
[1] On regular variation and its application to the weak convergence of sample extremes. Mathematical Centre Tracts 32. Amsterdam: Mathematisch Centrum, 1970. | MR 286156 | Zbl 0226.60039
:[2] Differential Geometry of Curves and Surfaces. Englewood Cliffs, New Jersey: Prentice Hall, 1976. | MR 394451 | Zbl 0326.53001
:[3] An Introduction to Probability Theory and its Applications, Vol. II, 2nd edn. New York: Wiley, 1971. | MR 270403 | Zbl 0039.13201
:[4] Integral-Tafel, Zweiter Teil: bestimmte Integrale. Wien 1950.
and :[5] Altes und Neues über konvexe Körper. Basel und Stuttgart: Birkhäuser Verlag, 1955. | MR 73220 | Zbl 0064.16503
:[6] The volume occupied by normally distributed spheres. Acta Math. 133 (1974) 273-286. | MR 410844 | Zbl 0297.60011
:[7] Regularly Varying Functions.Lecture Notes in Mathematics 508. Berlin: Springer Verlag, 1976. | MR 453936 | Zbl 0324.26002
:[8] 218, Mathematisch Instituut Rijksuniversiteit Groningen.
: The variance of the volume covered by a large number of rectangles with normally distributed centers. Report T. W.[9] 245, Mathematisch Instituut Rijksuniversiteit, Groningen.
: The volume covered by a large number of random sets: examples. Report T. W.-[10] Konvexe Mengen. Mannheim: Bibliographisches Institut, 1968. | MR 226495 | Zbl 0157.52501
: