@article{CM_1983__49_3_291_0, author = {Gaffney, Terence and Wilson, Leslie}, title = {Equivalence of generic mappings and $C^\infty $ normalization}, journal = {Compositio Mathematica}, volume = {50}, year = {1983}, pages = {291-308}, zbl = {0518.58009}, language = {en}, url = {http://dml.mathdoc.fr/item/CM_1983__49_3_291_0} }
Gaffney, Terence; Wilson, Leslie. Equivalence of generic mappings and $C^\infty $ normalization. Compositio Mathematica, Tome 50 (1983) pp. 291-308. http://gdmltest.u-ga.fr/item/CM_1983__49_3_291_0/
[1] Composite differentiable functions. Lecture Notes, AMS Symposium on Singularities, Arcata, 1981. | MR 678480
and :[2] The extension problem and related themes in differential analysis. Lecture Notes, AMS Symposium on Singularities, Arcata, 1981. | Zbl 0526.32006
and :[3] Extending immersions and regular homotopies in codimension 1. Ph.D. Thesis, Brandeis University, 1967.
:[4] Differentiable germs and catastrophes. Translated by L. Lander, London Math. Society Lecture Notes Series 17, Cambridge University Press, 1975. | MR 494220 | Zbl 0302.58006
:[5] The relation between C∞ and topological stability. Bol. Soc. Brasil. Mat. 8 (1977) 1-38. | Zbl 0471.58006
:[6] Genericity and smooth finite determinacy. In: AMS Proceedings of Symposia in Pure Mathematics 40 (1982). | MR 713068 | Zbl 0523.58009
:[7] On the genericity of topologically finitely-determined map-germs. Topology 21 (1982) 131-156. | MR 641997 | Zbl 0499.58007
:[8] On smooth ∞-determinacy and topological finite determinancy. Preliminary version.
and :[9] Map-germs determined by their discriminant. In preparation.
, and :[10] Right-symmetry of map-germs. In Preparation.
and :[11] Excellent maps with given folds and cusps. Houston J. Math. 3 (1977) 165-194. | MR 516183 | Zbl 0356.57028
and :[12] Properties of finitely determined germs. Ph.D. Thesis, Brandeis University, 1975.
:[13] Equivalence theorems in global singularity theory. AMS Symposium on Singularities, Arcata, Proceedings of Symposia in Pure Math. 40, to appear. | MR 713083 | Zbl 0524.58008
and :[14] Fibre bundles. Graduate texts in mathematics # 20, Springer-Verlag, New York, 1975. | MR 1249482 | Zbl 0307.55015
:[15] Symmetry properties of singularities of C∞-functions. Math. Ann. 238 (1978) 147-156. | Zbl 0373.58002
:[16] Ideals of differentiable functions. Oxford University Press, 1966. | MR 212575 | Zbl 0177.17902
:[17] Faisceaux analytiques semi-cohérent et fonctions différentiables. Thèse, Université de Rennes, 1980. Ann. Inst. Fourier 32, 2 (1982) 229-260. | Numdam | MR 599629 | Zbl 0462.58005
:[18] Introduction to the theory of analytic spaces. Lecture notes in mathematics no. 25, Springer-Verlag, New York, 1966. | MR 217337 | Zbl 0168.06003
:[19] Remarque sur l'équivalence des fonctions de phase. C. R. Acad. Sci. Paris 290 (23 juin 1980) 1095-1097. | MR 587864 | Zbl 0459.58003
:[20] The hunting of invariants in the geometry of the discriminant. Real and complex singularities, P. Holm, ed., Sijthoff and Noordhoff, Alphen aan den Rijn, Netherlands, 1977. | MR 568901
:[21] Idéaux de fonctions différentiables. Ergebnisse Band 71, Springer-Verlag, New York, 1972. | MR 440598 | Zbl 0251.58001
:[22] Finite determinacy of smooth map-germs. Bull. London Math. Soc. 13 (1981) 481-539. | MR 634595 | Zbl 0451.58009
:[23] Equivalence of stable mappings between two-dimensional manifolds. J. Differential Geom. 11 (1976) 1-14. | MR 410790 | Zbl 0331.58004
:[24] Global singularity theory. Institute of Mathematics, University of Aarhus (Denmark), Seminar Notes No. 1 (1982) 129-137. | Zbl 0504.58008
:[25] Singularities determined by their discriminant. Math. Ann. 252 (1980) 237-245. | MR 593636 | Zbl 0425.32003
:[26] Commutative algebra, II. Van Nostrand, New York, 1960. | MR 120249 | Zbl 0121.27801
and :