@article{CM_1982__47_3_333_0, author = {Herb, Rebecca}, title = {An inversion formula for weighted orbital integrals}, journal = {Compositio Mathematica}, volume = {47}, year = {1982}, pages = {333-354}, mrnumber = {681613}, zbl = {0498.43002}, language = {en}, url = {http://dml.mathdoc.fr/item/CM_1982__47_3_333_0} }
Herb, Rebecca A. An inversion formula for weighted orbital integrals. Compositio Mathematica, Tome 47 (1982) pp. 333-354. http://gdmltest.u-ga.fr/item/CM_1982__47_3_333_0/
[1] The Selberg trace formula for groups of F-rank one. Ann. of Math. 100 (1974) 326-385. (b) Some tempered distributions on semisimple groups of real rank one. Ann. of Math. 100 (1974) 553-584. (c) The characters of discrete series as orbital integrals. Inv. Math. 32 (1976) 205-261. (d) A trace formula for reductive groups I. Terms associated to classes in G(Q). Duke J. 45 (1978) 911-952. | MR 360470
: (a)[2] Differential operators on a semisimple Lie-algebra. Am. J. Math. 79 (1957) 87-120. (b) Harmonic analysis on real reductive groups, I. J. Fund. Anal. 19 (1975) 104-204. (c) Harmonic analysis on real reductive groups, III. Ann. of Math. 104 (1976) 117-201. | MR 84104 | Zbl 0331.22007
: (a)[3] A uniqueness theorem for tempered invariant eigendistributions. Pac. J. Math. 67 (1976) 203-208. (b) Discrete series characters and Fourier inversion on semisimple real Lie groups, to appear T.A.M.S. | MR 486319 | Zbl 0323.22008
: (a)[4] Invariant eigendistributions of Laplace operators on real simple Lie groups, II. Jap. J. Math. 2 (1976) 27-89. | MR 578894 | Zbl 0341.22006
:[5] The Selberg trace formula I: Γ-rank one lattices. J. für Reine und Angewandte Math. 324 (1981) 1-113. | Zbl 0469.22007
and :[6] Théorie des distributions, I. Hermann, Paris, 1957. | MR 209834 | Zbl 0078.11003
: