Homogeneous subsets of the real line
Van Mill, Jan
Compositio Mathematica, Tome 47 (1982), p. 3-13 / Harvested from Numdam
Publié le : 1982-01-01
@article{CM_1982__46_1_3_0,
     author = {Van Mill, Jan},
     title = {Homogeneous subsets of the real line},
     journal = {Compositio Mathematica},
     volume = {47},
     year = {1982},
     pages = {3-13},
     mrnumber = {660152},
     zbl = {0514.54011},
     language = {en},
     url = {http://dml.mathdoc.fr/item/CM_1982__46_1_3_0}
}
Van Mill, Jan. Homogeneous subsets of the real line. Compositio Mathematica, Tome 47 (1982) pp. 3-13. http://gdmltest.u-ga.fr/item/CM_1982__46_1_3_0/

[1] K. Kuratowski: Topologie II, Warsaw (1952).

[2] J. Menu: A partition of R in two homogeneous and homeomorphic parts (to appear).

[3] J. Van Mill: Characterization of some zero-dimensional separable metric spaces Trans. Amer. Math. Soc. 264 (1981) 205-215. | MR 597877 | Zbl 0493.54018

[4] J. Van Mill: Characterization of a certain subset of the Cantor set, to appear in Fund. Math. | MR 732656 | Zbl 0533.54020

[5] J. Van Mill: Periodic homeomorphisms on strongly homogeneous zero-dimensional spaces (to appear).