The Poincaré-Lelong equation on complete Kähler manifolds
Mok, Ngaiming ; Siu, Yum-Tong ; Yau, Shing-Tung
Compositio Mathematica, Tome 44 (1981), p. 183-218 / Harvested from Numdam
@article{CM_1981__44_1-3_183_0,
     author = {Mok, Ngaiming and Siu, Yum-Tong and Yau, Shing-Tung},
     title = {The Poincar\'e-Lelong equation on complete K\"ahler manifolds},
     journal = {Compositio Mathematica},
     volume = {44},
     year = {1981},
     pages = {183-218},
     mrnumber = {662462},
     zbl = {0531.32007},
     language = {en},
     url = {http://dml.mathdoc.fr/item/CM_1981__44_1-3_183_0}
}
Mok, Ngaiming; Siu, Yum-Tong; Yau, Shing-Tung. The Poincaré-Lelong equation on complete Kähler manifolds. Compositio Mathematica, Tome 44 (1981) pp. 183-218. http://gdmltest.u-ga.fr/item/CM_1981__44_1-3_183_0/

[1] A. Andreotti and E. Vesentini, Carleman estimates for the Laplace-Beltrami operator on complex manifolds, Publ. Math. Inst. Hautes Etudes Sci. 25 (1965), 81-130. | Numdam | MR 175148 | Zbl 0138.06604

[2] E. Bombieri and E. Giusti, Harnack's inequality for elliptic differential equations on minimal surfaces, Inv. math. 15 (1972), 24-46. | MR 308945 | Zbl 0227.35021

[3] J. Cheeger and D. Gromoll, The structure of complete manifolds of non-negative curvature, Bull. Am. Math. Soc. 74(6), 413-433. | MR 232310 | Zbl 0169.24101

[4] S.Y. Cheng and S.-T. Yau, Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math. Vol. 28 (1975), 333-354. | MR 385749 | Zbl 0312.53031

[5] S.S. Chern, H. Levine, and L. Nirenberg, Intrinsic norms on a complex manifold, Global analysis, (Papers in honor of K. Kodaira), Tokyo- University of Tokyo Press 1969, 119-139. | MR 254877 | Zbl 0202.11603

[6] C. Croke, Some isoperimetric inequalities and consequences, to appear in Ann. Sci. Ec. Norm. Sup. Pisa.

[7] R.E. Greene and H. Wu, Function Theory on Manifolds which Possess a Pole, Vol. 669. Springer-Verlag, Berlin- Heidelberg-New York, 1979. | MR 521983 | Zbl 0414.53043

[8] G.M. Henkin, The Lewy equation and analysis on pseudoconvex manifolds, Russian Math. Surveys 32, 3 (1977), 59-130. | MR 454067 | Zbl 0382.35038

[9] L. Hörmander, L2-estimates and existence theorems for the ∂-operator, Acta Math. 113 (1965), 89-152. | Zbl 0158.11002

[10] A. Huber, On subharmonic functions and differential geometry in the large, Comm. Math. Helv. 32 (1957), 13-72. | MR 94452 | Zbl 0080.15001

[11] P. Lelong, Fonctions entières (n variables) et fonctions plurisousharmoniques d'ordre fini dans Cn, J. Anal. Math. 12 (1964), 365-407. | MR 166391 | Zbl 0126.29602

[12] J. Moser, On Harnack's theorem for elliptic differential equations, Comm. Pure and Appl. Math 14 (1961), 577-591. | MR 159138 | Zbl 0111.09302

[13] Y.T. Siu and S.-T. Yau, Complete Kähler manifolds with non-positive curvature of faster than quadratic decay, Ann. Math. 105 (1977), 225-264. | MR 437797 | Zbl 0358.32006

[14] H. Skoda, Valeurs au bord pour les solutions de l'operateur d'' et caracterisation des zeros des fonctions de la classe de Navanlinna, Bull. Soc. Math. France 104 (1976), 225-299. | Numdam | MR 450620 | Zbl 0351.31007

[15] G. Stampacchia, Equations elliptiques du second ordre à coefficients discontinués, 1966 (Séminaire de Mathématiques Supérieures 16). | MR 251373 | Zbl 0151.15501

[16] S.-T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975), 201-228. | MR 431040 | Zbl 0291.31002

[17] R.L. Bishop and S.I. Goldberg, On the second cohomology group of a Kähler manifold of positive curvature, Proc. Amer. Math. Soc. 16 (1965), 119-122. | MR 172221 | Zbl 0125.39403

[18] S.I. Goldberg and S. Kobayashi, Holomorphic bisectional curvature, J. Diff. Geom. 1 (1967), 225-233. | MR 227901 | Zbl 0169.53202

[19] R. Greene and H.-H. Wu, On a new gap phenomenon in Riemannian geometry, preprint. | MR 648065