@article{CM_1981__43_2_239_0, author = {Grabowski, Janusz}, title = {Derivations of the Lie algebras of analytic vector fields}, journal = {Compositio Mathematica}, volume = {44}, year = {1981}, pages = {239-252}, mrnumber = {622450}, zbl = {0476.57010}, language = {en}, url = {http://dml.mathdoc.fr/item/CM_1981__43_2_239_0} }
Grabowski, Janusz. Derivations of the Lie algebras of analytic vector fields. Compositio Mathematica, Tome 44 (1981) pp. 239-252. http://gdmltest.u-ga.fr/item/CM_1981__43_2_239_0/
[1] Sur l'algebre des automorphismes infinitésimaux d'une variété symplectique. J. Diff. Geom. 9 (1974) 1-40. | Zbl 0283.53033
, and :[2] Quelques properiétés fondamentales des ensembles analytiques-réels. Commen. Math. Helv. 33 (1959) 132-160. | MR 102094 | Zbl 0100.08101
and :[3] Isomorphisms and ideals of the Lie algebras of vector fields. Invent. Math. 50 (1978) 13-33. | MR 516602 | Zbl 0378.57010
:[4] On Levi's problem and the imbedding of real-analytic manifolds. Ann. Math. 68 (1958) 460-472. | MR 98847 | Zbl 0108.07804
:[5] Analytic Functions of Several Complex Variables. New York: Prentice-Hall, Inc., Englewood Cliffs (1965). | MR 180696 | Zbl 0141.08601
and :[6] Über die recht-symetrische Algebra und die Lie-Algebra der konvergenten Potenzreihen eines Banachraumes. Schr. Math. Inst. Univ. Münster 2. Serie 16 (1979). | MR 529582 | Zbl 0404.46027
:[7] The derivation algebras of the classical infinite Lie algebras. J. Math. Kyoto Univ. 16 (1976) 1-24. | MR 420649 | Zbl 0335.17009
:[8] Imbedding of holomorphically complete complex spaces. Amer. J. Math. 82 (1960) 917-934. | MR 148942 | Zbl 0104.05402
:[9] Derivation of vector fields. Compositio Math. 26 (1973) 151-158. | Numdam | MR 315723 | Zbl 0258.58005
: