p-adic L-functions for elliptic curves with complex multiplication I
Cassou-Noguès, Pierrette
Compositio Mathematica, Tome 42 (1980), p. 31-56 / Harvested from Numdam
Publié le : 1980-01-01
@article{CM_1980__42_1_31_0,
     author = {Cassou-Nogu\`es, Pierrette},
     title = {$p$-adic $L$-functions for elliptic curves with complex multiplication I},
     journal = {Compositio Mathematica},
     volume = {42},
     year = {1980},
     pages = {31-56},
     mrnumber = {594482},
     zbl = {0475.14021},
     language = {en},
     url = {http://dml.mathdoc.fr/item/CM_1980__42_1_31_0}
}
Cassou-Noguès, Pierrette. $p$-adic $L$-functions for elliptic curves with complex multiplication I. Compositio Mathematica, Tome 42 (1980) pp. 31-56. http://gdmltest.u-ga.fr/item/CM_1980__42_1_31_0/

[1] N. Arthaud: On Birch and Swinnerton-Dyer's conjecture for elliptic curve with complex multiplication I. Compositio Math. 37 (1978) 209-232. | Numdam | MR 504632 | Zbl 0396.12011

[2] J. Coates: p-adic L functions and Iwasawa theory in Algebraic Number Fields, editor A. Fröhlich Academic Press, 1977. | MR 460282

[3] J. Coates and A. Wiles: On the conjecture of Birch and Swinnerton-Dyer, Inventiones Mathematicae 39 (1977) 223-251. | MR 463176 | Zbl 0359.14009

[4] J. Coates and A. Wiles: Kummer's criterion for Hürwitz numbers. Proceedings of the International Conference on Algebraic Number Theory. Kyoto Japan 1976. | Zbl 0369.12009

[5] J. Coates and A. Wiles: On p-adic L-functions and elliptic units. J. Austral. Math. Soc. (series A) 26 (1978) 1-25. | MR 510581 | Zbl 0442.12007

[6] A. Fröhlich: Formal groups. Lecture Notes in Mathematics 74. Springer 1968. | MR 242837 | Zbl 0177.04801

[7] E. Hecke: Mathematishe werke n ° 14. Eine neue Art von Zeta funktionen und ihre Beziehungen zur Verteilung der Primzahlen, Zweite Mitteilung p. 249-289.

[8] K. Iwazawa: Lectures on p-adic L-functions. Ann. of Maths Studies 74. Princeton University Press, 1972. | MR 360526 | Zbl 0236.12001

[9] N. Katz: The Eisenstein measure and p-adic interpolation. Amer. J. Math. 99, p. 238-311. | MR 485797 | Zbl 0375.12022

[10] N. Katz: Formal groups and p-adic interpolation, Astérisque 41-42, p. 55-65. | MR 441928 | Zbl 0351.14024

[11] H.W. Leopoldt: Eine p-adische Theorie der Zetawerte II. J. Reine Ang. Math. 274-275 (1975) 224-239. | MR 379446 | Zbl 0309.12009

[12] S. Lichtenbaum: On p-adic L-functions associated to elliptic curves, Inventiones Mathematicae 56 (1980) 19-55. | MR 557580 | Zbl 0425.12017

[13] J. Lubin: One parameter formal Lie groups over p-adic integer rings. Ann. of Maths 80 (1964) 464-484. | MR 168567 | Zbl 0135.07003

[14] J. Lubin and J. Tate: Formal complex multiplication in local fields. Ann. of Maths 81 (1965) 380-387. | MR 172878 | Zbl 0128.26501

[15] J. Manin and S. Vishik: p-adic Hecke series for quadratic imaginary fields. Math. Sbornik 24 (1974) 345-372. | Zbl 0329.12016

[16] G. Robert: Unités elliptiques. Bull. Soc. Math. France, mémoire 36 (1973). | Numdam | MR 469889 | Zbl 0314.12006

[ 17] G. Shimura: Introduction to the arithmetic theory of automorphic functions. Pub. Math. Soc. Japan II (1971). | MR 314766 | Zbl 0221.10029

[18] C.L. Siegel: Lectures on advanced analytic number theory. Tata Institute of fundamental research Bombay. | MR 262150 | Zbl 0278.10001

[19] J. Tate: Arithmetic of elliptic curves. Inventiones Math. 23 (1974) 179-206. | MR 419359 | Zbl 0296.14018

[20] S. Vishik: The p-adic zeta function of an imaginary quadratic field and the Leopold regulator. Math. Sbornik 102 (144) (1977) No. 2. | MR 480435 | Zbl 0443.12007