@article{CM_1979__38_3_311_0, author = {Richardson, R. W.}, title = {Commuting varieties of semisimple Lie algebras and algebraic groups}, journal = {Compositio Mathematica}, volume = {39}, year = {1979}, pages = {311-327}, mrnumber = {535074}, zbl = {0409.17006}, language = {en}, url = {http://dml.mathdoc.fr/item/CM_1979__38_3_311_0} }
Richardson, R. W. Commuting varieties of semisimple Lie algebras and algebraic groups. Compositio Mathematica, Tome 39 (1979) pp. 311-327. http://gdmltest.u-ga.fr/item/CM_1979__38_3_311_0/
[1] Unipotent elements in semisimple algebraic groups. I. Math. Proc. Cambridge Philos. Soc. 79 (1976) 401-425. | MR 417306 | Zbl 0364.22006
and :[2] Linear Algebraic Groups. Benjamin, New York, 1969. | MR 251042 | Zbl 0186.33201
:[3] Théorèmes de finitude en cohomologie galoisienne. Comment. Math. Helv. 39 (1964) 111-164. | MR 181643 | Zbl 0143.05901
and :[4] Éléments de mathematique; Groupes et algèbres de Lie, Chap. 7 et 8. Hermann, Paris, 1975. | MR 453824 | Zbl 0505.22006
:[5] Polarisations dans les algebras de Lie semi-simple complexes. Bull. Sci. Math. 99 (1975) 45-63. | MR 435165 | Zbl 0314.17009
:[6] On dominance and varieties of commuting matrices. Ann. of Math. (2) 73 (1961) 324-348. | MR 132079 | Zbl 0168.28201
:[7] Conjugacy classes in parabolic subgroups of semisimple algebraic groups, II. Bull. London Math. Soc. 9 (1977) 245-250. | MR 480766 | Zbl 0375.22008
and :[8] On the conjugacy of real Cartan subalgebras. I. Proc. Nat. Acad. Sci. USA 41 (1955) 967-970. | MR 73928 | Zbl 0065.26901
:[9] Deformations of Lie subgroups and the variation of isotropy supgroups. Acta Math. 129 (1972) 35-73. | MR 299723 | Zbl 0242.22020
:[10] Conjugacy classes of parabolic subgroups in semisimple algebraic groups. Bull. London Math. Soc. 6 (1974) 21-24. | MR 330311 | Zbl 0287.20036
:[11] Conjugacy classes, in Seminar in Algebraic Groups and Related Finite Groups, ed. by A. Borel et al., Lecture Notes in Mathematics 131, Springer-Verlag, Berlin-Heidelberg-New York, 1970. | MR 268192 | Zbl 0249.20024
and :