@article{CM_1978__37_3_277_0, author = {Foster, Dorothy and Williams, David}, title = {The Hawkins sieve and brownian motion}, journal = {Compositio Mathematica}, volume = {S37}, year = {1978}, pages = {277-289}, mrnumber = {511745}, zbl = {0402.10052}, language = {en}, url = {http://dml.mathdoc.fr/item/CM_1978__37_3_277_0} }
Foster, Dorothy; Williams, David. The Hawkins sieve and brownian motion. Compositio Mathematica, Tome S37 (1978) pp. 277-289. http://gdmltest.u-ga.fr/item/CM_1978__37_3_277_0/
[1] Brownian Motion and Diffusion (Holden-Day, San Francisco, 1971). | MR 297016 | Zbl 0231.60072
:[2] Branching processes since 1873, J. London Math. Soc. 41 (1966) 385-406. | MR 198551 | Zbl 0154.42505
:[3] Probability Theory (van Nostrand, Princeton, N.J., 1963). | MR 203748 | Zbl 0108.14202
:[4] Stochastic Integrals (Academic Press, New York-London, 1969). | MR 247684 | Zbl 0191.46603
:[5] The 'Riemann hypothesis' for the Hawkins random sieve, Compositio Math. 29 (1974) 197-200. | Numdam | MR 399029 | Zbl 0312.10033
and :[6] Differential equations with a small parameter and the central limit theorem for functions defined on a Markov chain, Z. Wahrscheinlichkeitstheorie 9 (1968) 101-111. | MR 228067 | Zbl 0155.24203
:[7] Almost sure behavior of sums of independent random variables and martingales, Proc. 5th Berkeley Symp., Vol. 2, part 1 (1966) 315-343. | MR 214118 | Zbl 0201.49903
:[8] Two limit theorems for random evolutions having non-ergodic driving processes, (to appear in proceedings of Park City, Utah conference on stochastic differential equations). | Zbl 0463.60052
:[9] A study of a diffusion process motivated by the sieve of Eratosthenes, Bull. London Math. Soc. 6 (1974) 155-164. | MR 359027 | Zbl 0326.60094
:[10] The prime number theorem for random sequences, J. Number Theory 8 (1976) 369-371. | MR 429799 | Zbl 0341.10036
: