@article{CM_1978__37_3_243_0, author = {Kalton, N. J.}, title = {The three space problem for locally bounded $F$-spaces}, journal = {Compositio Mathematica}, volume = {S37}, year = {1978}, pages = {243-276}, mrnumber = {511744}, zbl = {0395.46003}, language = {en}, url = {http://dml.mathdoc.fr/item/CM_1978__37_3_243_0} }
Kalton, N. J. The three space problem for locally bounded $F$-spaces. Compositio Mathematica, Tome S37 (1978) pp. 243-276. http://gdmltest.u-ga.fr/item/CM_1978__37_3_243_0/
[1] Locally bounded linear topological spaces. Proc. Imp. Acad. Tokyo 18 (1942) No. 10. | MR 14182 | Zbl 0060.26503
:[2] A convexity condition in Banach spaces and the strong law of large numbers. Proc. Amer. Math. Soc. 13 (1962) 329-334. | MR 133857 | Zbl 0108.31401
:[3] Über Vererbbarkeitseigenschaften in topologischen Vektorräumen, Dissertation, Munich 1974.
:[4] On the 'three space problem'. Math. Scand. 36 (1975) 199-210. | MR 383047 | Zbl 0314.46015
, and :[5] On a convexity condition in normed linear spaces. Trans. Amer. Math. Soc. 125 (1966) 114-146. | MR 205031 | Zbl 0183.13204
:[6] Orlicz sequence spaces without local convexity (to appear). | MR 433194 | Zbl 0345.46013
:[7] Quotients of Lp(0, 1) for 0 ≤ p < 1 (to appear). | Zbl 0393.46007
and :[8] Bases and basic sequences in F-spaces. Studia Math., 61 (1976) 47-61. | MR 420201 | Zbl 0334.46008
and :[9] l1 as a quotient space over an uncomplemented line (to appear).
:[10] On certain classes of linear metric spaces. Bull. Acad. Polon. Sci. 5 (1957) 471-473. | MR 88682 | Zbl 0079.12602
:[11] Some remarks on the spaces N(L) and N(l). Studia Math. 18 (1959) 1-9. | MR 103413 | Zbl 0085.32301
:[12] Some properties of lp, 0 < p < 1. Studia Math. 42 (1972) 109-119. | MR 308726 | Zbl 0208.14502
:[13] Convexités dans les espaces vectoriels topologiques generaux, Diss. Math. No. 131, 1976. | MR 423044 | Zbl 0331.46001
: