A Hirzebruch-Riemann-Roch formula for analytic spaces and non-projective algebraic varieties
Fulton, William
Compositio Mathematica, Tome 35 (1977), p. 279-283 / Harvested from Numdam
@article{CM_1977__34_3_279_0,
     author = {Fulton, William},
     title = {A Hirzebruch-Riemann-Roch formula for analytic spaces and non-projective algebraic varieties},
     journal = {Compositio Mathematica},
     volume = {35},
     year = {1977},
     pages = {279-283},
     mrnumber = {460323},
     zbl = {0367.14008},
     language = {en},
     url = {http://dml.mathdoc.fr/item/CM_1977__34_3_279_0}
}
Fulton, William. A Hirzebruch-Riemann-Roch formula for analytic spaces and non-projective algebraic varieties. Compositio Mathematica, Tome 35 (1977) pp. 279-283. http://gdmltest.u-ga.fr/item/CM_1977__34_3_279_0/

[1] M.F. Atiyah and I.M. Singer: The index of elliptic operators: III. Ann. of Math. 87 (1968) 546-604. | MR 236952 | Zbl 0164.24301

[2] P. Baum, W. Fulton, and R. Macpherson: Riemann-Roch for singular varieties. Publ. Math. I.H.E.S. no. 45 (1975) 101-146. | Numdam | MR 412190 | Zbl 0332.14003

[3] P. Baum, W. Fulton, and R. Macpherson: Homology K and Riemann-Roch for singular varieties (to appear). | MR 412190

[4] A. Borel and J.-P. Serre: Le théorème de Riemann-Roch, d'après A. Grothendieck. Bull. Soc. Math. France 86 (1958) 97-136. | Numdam | MR 116022 | Zbl 0091.33004

[5] W. Fulton: Rational equivalence for singular varieties. Publ. Math. I.H.E.S. no. 45 (1975) 147-167. | Numdam | MR 404257 | Zbl 0332.14002

[6] W. Fulton: Rational equivalence for schemes (in preparation).

[7] A. Grothendieck, Fibrés vectoriels: fibrés projectifs, fibrés en drapeaux. Séminaire Henri Cartan 13 (1960/61) exposé 12. | Numdam

[8] F. Hirzebruch: Topological Methods in Algebraic Geometry. Springer, 1966. | MR 1335917 | Zbl 0138.42001

[9] A. Grothendieck and J. Dieudonné: Éléments de géométrie algébrique. Publ. Math. I.H.E.S. no. 8 (1961). | Numdam

[10] Séminaire de Géométrie Algébrique du Bois-Marie (I.H.E.S.) 5; Cohomologie 1-adique et fonctions L (to appear).