Zero cycles on surfaces with p g =0
Bloch, S. ; Kas, A. ; Lieberman, D.
Compositio Mathematica, Tome 33 (1976), p. 135-145 / Harvested from Numdam
@article{CM_1976__33_2_135_0,
     author = {Bloch, Spencer and Kas, Arnold and Lieberman, D. I.},
     title = {Zero cycles on surfaces with $p\_g = 0$},
     journal = {Compositio Mathematica},
     volume = {33},
     year = {1976},
     pages = {135-145},
     mrnumber = {435073},
     zbl = {0337.14006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/CM_1976__33_2_135_0}
}
Bloch, S.; Kas, A.; Lieberman, D. Zero cycles on surfaces with $p_g = 0$. Compositio Mathematica, Tome 33 (1976) pp. 135-145. http://gdmltest.u-ga.fr/item/CM_1976__33_2_135_0/

[1] K. Kodaira: On Compact Analytic surfaces II, III. Ann. of Math. (2) 77 (1963) 563-626, 78 (1963) 1-40. | MR 184257 | Zbl 0171.19601

[2] K. Kodaira: On the structure of compact complex analytic surfaces IV. Amer. J. Math. 90 (1968) 1048-1066. | MR 239114 | Zbl 0193.37702

[3] D. Mumford: Rational equivalence of zero cycles on surfaces. J. Math. Kyoto 9 (1969) 195-204. | MR 249428 | Zbl 0184.46603

[4] A.A. Roitman: (a) Rational equivalence of zero cycles. Math. USSR Sbornik, 18 (1972) 571-588.(b) Ruledness of an algebraic surface with finite dimensional nonzero group of classes of zero dimensional cycles of degree zero modulo rational equivalence. Funct. Anal. i Pril. 8 (1974) 88-89. | MR 463165 | Zbl 0337.14027

[5] I. R ŠAFAREVIC, et al.: Algebraic surfaces. Proc. Steklov Inst. Math. 75 (1965). | MR 215850

[6] P. Samuel: Relations d'équivalence en géometrie algébrique. Proc. Int. Congress Math. 1958, 470-487. | MR 116010 | Zbl 0119.36901

[7] S. Bloch: K2 or artinian Q-algebras with application to algebraic cycles. Communications in Algebra. (To appear). | Zbl 0327.14002

[8] O. Zariski: Algebraic Surfaces, Appendix by D. Mumford to the second supplemented edition. Ergeb. du Math. 61 (1971). | MR 469915 | Zbl 0219.14020

[9] D. Mumford: Abelian Varieties. Oxford University Press (1970). | MR 282985 | Zbl 0223.14022