@article{CM_1975__31_3_309_0,
author = {Altman, Allen B. and Kleiman, Steven},
title = {Joins of schemes, linear projections},
journal = {Compositio Mathematica},
volume = {31},
year = {1975},
pages = {309-343},
mrnumber = {396560},
zbl = {0337.14004},
language = {en},
url = {http://dml.mathdoc.fr/item/CM_1975__31_3_309_0}
}
Altman, Allen B.; Kleiman, Steven L. Joins of schemes, linear projections. Compositio Mathematica, Tome 31 (1975) pp. 309-343. http://gdmltest.u-ga.fr/item/CM_1975__31_3_309_0/
[1] and : A Divisorial Cycle Acquiring an Embedded Component under a Flat Specialization (to appear). | Numdam | Zbl 0319.14001
[2] : Les classes d'équivalence rationnelle (I et II). Séminaire C. Chevalley, 2e Année: 1958, Anneaux de Chow et Applications, exp 2, 14 pp and exp 3, 18 pp, Secrétariat Mathématique, Paris, 134 pp (mimeographed). | Numdam | MR 110704 | Zbl 0098.13101
[3] : On Equivalence Classes of Cycles in an Algebraic Variety. Annals of Mathematics v. 64 (1956) 450-479. | MR 82173 | Zbl 0073.37304
[4] and : Eléments de Géometrie Algébrique I Springer-Verlag (1971) (cited EGA I). | Zbl 0203.23301
[5] and : Eléments de Géométrie Algébrique. Publ. Math. No. 8, IHES, (1961) (cited EGA II). | Numdam
[6] : Embedding-obstruction for algebraic varieties I. University of Bergen, Norway, Preprint No. 1.
[7] : Etude cohomologique des pinceaux de Lefschetz, Expose XVIII, SGA 7 II. Lecture Notes in Math No. 340, Springer-Verlag (1973) especially Sec. 3.1, p. 267. | Zbl 0284.14007
[8] : Geometry on Grassmannians and Applications to Splitting Bundles and Smoothing Cycles. Publ. Math. No. 36, IHES, (1969) pp. 281-298. | Numdam | MR 265371 | Zbl 0208.48501
[9] and : An Algebraic Correspondence with Applications to Projective Bundles and Blowing-Up Chern Classes. (to appear in Annali di Matematica, Pura ed Applicata). | MR 360583 | Zbl 0296.14009
[10] : Chow's Moving Lemma. Algebraic Geometry, Oslo 1970, Wolters-Noordhoff Publishing. Groningen, (1972) 89-96. | MR 382269
[11] : Rational Equivalence of Arbitrary Cycles. American Journal of Mathematics, v 78 (1956) 383-400. | MR 95845 | Zbl 0075.16002