@article{CM_1975__31_3_303_0, author = {Anderson, Michael P.}, title = {Some finiteness properties of the fundamental group of a smooth variety}, journal = {Compositio Mathematica}, volume = {31}, year = {1975}, pages = {303-308}, mrnumber = {399097}, zbl = {0328.14008}, language = {en}, url = {http://dml.mathdoc.fr/item/CM_1975__31_3_303_0} }
Anderson, Michael P. Some finiteness properties of the fundamental group of a smooth variety. Compositio Mathematica, Tome 31 (1975) pp. 303-308. http://gdmltest.u-ga.fr/item/CM_1975__31_3_303_0/
[1] Resolution of Singularities of Embedded Algebraic Surfaces. Academic Press, New York, 1966. | MR 217069 | Zbl 0147.20504
:[2] Profinite Groups and the Topological Invariants of Algebraic Varieties. Princeton Ph.D. thesis, 1974.
:[3] EXACTNESS PROPERTIES OF PROFINITE COMPLETION FUNCTORS. Topology 13 (1974) 229-239. | MR 354882 | Zbl 0324.20041
:[4] Theorie des Topos et Cohomologie Etale des Schemas. Lecture Notes in Mathematics 305 (1973). | Zbl 0245.00002
, , :[5] Une forme algebrique du theoreme de Zariski pour Π1. C. R. Acad. Sci. Paris Ser. A-B 272 (1971) A769-A771. | Zbl 0215.08102
:[6] The Etale Homotopy Theory of a Geometric Fibration. Manuscripta Mathematica 10 (1973) 209-244. | MR 352099 | Zbl 0263.14004
:[7] Revetements Etales et Groupe Fondamental. Lecture Notes in Mathematics 224 (1971). | MR 354651 | Zbl 0234.14002
et al.:[8] Groupes de Monodromie en Geometrie Algebrique. Lecture Notes in Mathematics 288 (1972). | Zbl 0237.00013
et al.:[9] Ein Satz vom Lefschetzschen Typ Uber die Fundamentalgruppe quasi-projectiver Schemata. Math. Z. 116 (1970) 143-152. | MR 291180 | Zbl 0199.55801
:[10] Theoreme de Lefschetz en Cohomologie des Faisceux coherents et en cohomologie etale. Ann. E. N. S. 4 (1974) 29-52. | Numdam | MR 379503 | Zbl 0317.14006
: