The n-cohomology of representations with an infinitesimal character
Casselman, William ; Osborne, M. Scott
Compositio Mathematica, Tome 31 (1975), p. 219-227 / Harvested from Numdam
@article{CM_1975__31_2_219_0,
     author = {Casselman, William and Osborne, M. Scott},
     title = {The $n$-cohomology of representations with an infinitesimal character},
     journal = {Compositio Mathematica},
     volume = {31},
     year = {1975},
     pages = {219-227},
     mrnumber = {396704},
     zbl = {0343.17006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/CM_1975__31_2_219_0}
}
Casselman, William; Osborne, M. Scott. The $n$-cohomology of representations with an infinitesimal character. Compositio Mathematica, Tome 31 (1975) pp. 219-227. http://gdmltest.u-ga.fr/item/CM_1975__31_2_219_0/

[1] F. Aribaud: Une nouvelle demonstration d'un théorème de R. Bott et B. Kostant. Bull. Math. Soc. France 95 (1967) 205-242. | Numdam | MR 236311 | Zbl 0155.06901

[2] P. Cartier: Remarks on 'Lie algebra cohomology and the generalized Borel-Weil theorem' by B. Kostant. Ann. of Math. 74 (1961) 388-390. | MR 142698 | Zbl 0134.03502

[3] W. Casselman: Some general results on admissible representations of p-adic groups. (to appear)

[4] J. Humphreys: Introduction to Lie algebras and representation theory. New York: Springer, 1972. | MR 323842 | Zbl 0254.17004

[5] B. Kostant: Lie algebra cohomology and the generalized Borel-Weil theorem. Ann. of Math. 74 (1961) 329-387. | MR 142696 | Zbl 0134.03501

[6] B. Kostant: Lie group representations on polynomial rings. Amer. J. of Math. 85 (1963) 327-404. | MR 158024 | Zbl 0124.26802

[7] M.S. Osborne: Yale University Ph.D. thesis. (1973).

[8] G. Warner: Harmonic analysis on semi-simple groups I. New York, Springer, 1972. | Zbl 0265.22020