The point-outerthickness of complete n-partite graphs
Mitchem, John
Compositio Mathematica, Tome 29 (1974), p. 55-61 / Harvested from Numdam
Publié le : 1974-01-01
@article{CM_1974__29_1_55_0,
     author = {Mitchem, John},
     title = {The point-outerthickness of complete $n$-partite graphs},
     journal = {Compositio Mathematica},
     volume = {29},
     year = {1974},
     pages = {55-61},
     mrnumber = {354450},
     zbl = {0291.05104},
     language = {en},
     url = {http://dml.mathdoc.fr/item/CM_1974__29_1_55_0}
}
Mitchem, John. The point-outerthickness of complete $n$-partite graphs. Compositio Mathematica, Tome 29 (1974) pp. 55-61. http://gdmltest.u-ga.fr/item/CM_1974__29_1_55_0/

[1] L.W. Beineke: Complete bipartite graphs: decomposition into planar subgraphs, A Seminar in Graph Theory (F. Harary, ed.) Holt, Rinehart and Winston, New York, 1967, 42-53. | MR 215745 | Zbl 0207.22901

[2] L.W. Beineke, F. Harary and J.W. Moon: On the thickness of the complete bipartite graph. Proc. Cambridge Philos. Soc., 60 (1964) 1-5. | MR 158388 | Zbl 0121.18402

[3] G. Chartrand, D. Geller and S. Hedetniemi: Graphs with forbidden subgraphs. J. Combinatorial Theory, 10 (1971) 12-41. | MR 285427 | Zbl 0223.05101

[4] G. Chartrand and H.V. Kronk: The point-arboricity of planar graphs. J. London Math. Soc., 44 (1969) 612-616. | MR 239996 | Zbl 0175.50505

[5] G. Chartrand, H.V. Kronk and C.E. Wall: The point-arboriticy of a graph. Israel J. Math., 6 (1968) 169-175. | MR 236049 | Zbl 0164.54201

[6] F. Harary: Graph Theory. Addison-Wesley, Reading, Mass. 1969, 120-121. | MR 256911 | Zbl 0182.57702

[7] J. Mayer: Decomposition de K16 en trois graphes planaires. J. Combinatorial Theory (B), 13 (1972) 71. | Zbl 0238.05103

[8] J. Mitchem: Uniquely k-arborable graphs. Israel J. Math., 10 (1971) 17-25. | MR 300921 | Zbl 0224.05105

[9] St J.A. Nash-Williams: Edge-disjoint spanning trees of finite graphs. J. London Math. Soc., 36 (1961) 445-450. | MR 133253 | Zbl 0102.38805