@article{CM_1973__26_3_261_0, author = {Moschovakis, Joan Rand}, title = {A topological interpretation of second-order intuitionistic arithmetic}, journal = {Compositio Mathematica}, volume = {27}, year = {1973}, pages = {261-275}, mrnumber = {357076}, zbl = {0279.02018}, language = {en}, url = {http://dml.mathdoc.fr/item/CM_1973__26_3_261_0} }
Moschovakis, Joan Rand. A topological interpretation of second-order intuitionistic arithmetic. Compositio Mathematica, Tome 27 (1973) pp. 261-275. http://gdmltest.u-ga.fr/item/CM_1973__26_3_261_0/
The Foundations of intuitionistic mathematics, Amsterdam (North-Holland), 1965. | MR 176922 | Zbl 0133.24601
and [1]Formal systems for some branches of intuitionistic analysis, Annals of mathematical logic, Vol. 1 (1970), pp. 229-387. | MR 263609 | Zbl 0211.01101
and [2]Informal rigour and completeness proofs, in Problems in the philosophy of mathematics, ed. I. LAKATOS, Amsterdam (North-Holland), 1967, pp. 138-171, with following discussion.
[3]Disjunction, existence, and λ-definability in formalized intuitionistic analysis, Ph. D. Thesis, University of Wisconsin, 1965.
[4]Formal systems of intuitionistic analysis I, in Logic, methodology and philosophy of science III, eds. B. van Rootselaar and J. F. Staal, Amsterdam (North-Holland), 1968, pp. 161-178. | MR 252204 | Zbl 0202.00601
[5]The mathematics of metamathematics, Warsaw, 1963. | MR 163850 | Zbl 0122.24311
and [6]Extending the topological interpretation to intuitionistic analysis, Compositio Mathematica 20 (1968), pp. 194-210. | Numdam | MR 228331 | Zbl 0197.00201
[7]Extending the topological interpretation to intuitionistic analysis II, in Intuitionism and proof theory, eds. J. Myhill, A. Kino and R. Vesley, Amsterdam (North-Holland), 1970, pp. 235-255. | MR 274260 | Zbl 0213.01203
[8][9] Notes on the intuitionistic theory of sequences (I), Indag. Math. 31, No. 5 (1969). | MR 258597 | Zbl 0188.31603