On a new method in intuitionist linear analysis
Shukla, Sahab Lal
Compositio Mathematica, Tome 27 (1973), p. 181-202 / Harvested from Numdam
Publié le : 1973-01-01
@article{CM_1973__26_3_181_0,
     author = {Shukla, Sahab Lal},
     title = {On a new method in intuitionist linear analysis},
     journal = {Compositio Mathematica},
     volume = {27},
     year = {1973},
     pages = {181-202},
     mrnumber = {332451},
     zbl = {0275.02037},
     language = {en},
     url = {http://dml.mathdoc.fr/item/CM_1973__26_3_181_0}
}
Shukla, Sahab Lal. On a new method in intuitionist linear analysis. Compositio Mathematica, Tome 27 (1973) pp. 181-202. http://gdmltest.u-ga.fr/item/CM_1973__26_3_181_0/

L.E.J. Brouwer [1] Points and spaces. Can. J. Math. 6, 1-17 (1954). | MR 59866 | Zbl 0055.04601

A. Heyting [2] Intuitionism, an introduction. Amsterdam 1966. | MR 221911 | Zbl 0125.00510

A. Heyting [3] Note on the Riesz-Fischer theorem. Proc. Kon. Ned. Ak. v. Wet. ser. A, 54 35-40 (1951). | MR 40251 | Zbl 0043.29101

A. Heyting [4] Espaces de Hilbert et intuitionnisme, Colloque internationaux du C.N.R.S. Paris 1953, 59-63. | MR 56545 | Zbl 0053.00701

A. Heyting [5] Intuïtionistische theorie der Hilbert-ruimten. (Unpublished lecture notes in Netherlandish. Amsterdam, 1949-50).

Ashvini Kumar [6] Hilbert spaces in intuitionism-Hilbertaj spacoj en intuiciismo. Thesis. Amsterdam, 1966.

Ashvini Kumar [7] Über Katalogisierte Räume. Comp. Math. 21, 431-456 (1970). | Numdam | MR 258595 | Zbl 0215.32103

Ashvini Kumar [8] On the intuitionist theory of Stieltjes integration and its applications. Proc. Kon. Ned. Ak. v. Wet. ser. A, 73, 62-76, (1970). | MR 259061 | Zbl 0201.01204

Ashvini Kumar [9] On Brouwer-Stieltjes integration. Proc. Kon. Ned. Ak. v. Wet. ser. A, 73, 161-171 (1970). | MR 262433 | Zbl 0216.00702

Ashvini Kumar [10] A note on quasi-numbers. (To appear.)

Ashvini Kumar and S.L. Shukla [11] Intuitionist determination of dual spaces of certain catalogued linear spaces. I., II. Proc. Kon. Ned. Ak. v. Wet. ser. A, 74, no. 3 (1971). | MR 288546 | Zbl 0215.19403

S.L. Shukla [12] On intuitionist analogues of classically inseparable spaces. (To appear.) | MR 305031 | Zbl 0248.02034

S.L. Shukla [13] On some linear spaces which coincide classically but are different intuitionistically. (To appear.) | MR 305032 | Zbl 0248.02035

S.L. Shukla [14] Intuitionist treatment of sequence spaces satisfying a condition of convergence, or absolute convergence or their analogues and related spaces. (To appear.)

E. Bishop [15] Foundations of constructive analysis, New York. 1967. | MR 221878 | Zbl 0183.01503

J.D. Hill [16] On the space (y) of convergent series, Tôhoku math. J. 45, 332-337 (1939). | JFM 65.0225.03 | Zbl 0021.11801

G.H. Hardy [17] Divergent series, Oxford, 1949. | MR 30620 | Zbl 0032.05801

G. Köthe [18] Topologische lineare Räume I., Berlin Göttingen-Heidelberg 1960. | MR 130551 | Zbl 0093.11901

L.V. Kantorovich and G.P. Akilov [19] Functional analysis in normed spaces. Oxford -London New York etc. 1964. (Translated from the Russian 'Funktoional'nyi analiz v normirovannykh prostranstvakh, Moscow 1959). | MR 119071 | Zbl 0127.06104

F. Riesz and B. Sz. Nagy [20] Leçons d'analyse fonctionnelle. Budapest 1953. | Zbl 0051.08403