@article{CM_1972__25_3_263_0, author = {Hartley, B.}, title = {Sylow theory in locally finite groups}, journal = {Compositio Mathematica}, volume = {25}, year = {1972}, pages = {263-280}, mrnumber = {316557}, zbl = {0248.20036}, language = {en}, url = {http://dml.mathdoc.fr/item/CM_1972__25_3_263_0} }
Hartley, B. Sylow theory in locally finite groups. Compositio Mathematica, Tome 25 (1972) pp. 263-280. http://gdmltest.u-ga.fr/item/CM_1972__25_3_263_0/
Saturated formations and Sylow structure in locally finite groups. J. Alg. 17 (1971) 177-212. | MR 272897 | Zbl 0215.10605
, and [1 ]The existence of abelian subgroups of infinite rank in locally soluble groups. Dokl. Akad. Nauk SSSR 156 (1964) 17-20 (Russian) (Soviet Math. Dokl. 5 (1964) 591-4). | MR 163954 | Zbl 0134.02901
[2]Finite groups. Harper's series in modern mathematics. (Harper and Row, New York, 1968). | MR 231903 | Zbl 0185.05701
[3]Sylow subgroups of locally finite groups. Proc. London Math. Soc., (3) 23 (1971) 159-92. | MR 304488 | Zbl 0221.20040
[4]Sylow p-subgroups and local p-solubility, to appear in J. Alg. | MR 306315 | Zbl 0246.20022
[5]F-abnormal subgroups of certain locally finite groups. Proc. London Math. Soc., (3) 23 (1971) 228-58. | MR 304487 | Zbl 0221.20039
[6]Some problems in the theory of soluble and nilpotent groups. Dokl. Akad. Nauk SSSR 127 (1959) 1164-1166 (Russian). | MR 107669 | Zbl 0119.26503
[7]Groups in which every subgroup is subnormal. J. Alg. 2 (1965) 402-412. | MR 193147 | Zbl 0135.04901
[8]Radical groups. Mat. Sbornik N.S. 37 (79) (1955) 507-526 (Russian) (Amer. Math. Soc. Translations (2) 17 (1961) 9-28). | MR 124400 | Zbl 0128.25402
[9]Infinite Linear Groups (Queen Mary College Mathematics Notes, Queen Mary College, London, 1969). | MR 837425
[10]