The Clifford algebra and the Spinor group of a Hilbert space
La Harpe, P. de
Compositio Mathematica, Tome 25 (1972), p. 245-261 / Harvested from Numdam
@article{CM_1972__25_3_245_0,
     author = {La Harpe, Pierre de},
     title = {The Clifford algebra and the Spinor group of a Hilbert space},
     journal = {Compositio Mathematica},
     volume = {25},
     year = {1972},
     pages = {245-261},
     mrnumber = {317068},
     zbl = {0244.22018},
     language = {en},
     url = {http://dml.mathdoc.fr/item/CM_1972__25_3_245_0}
}
La Harpe, P. de. The Clifford algebra and the Spinor group of a Hilbert space. Compositio Mathematica, Tome 25 (1972) pp. 245-261. http://gdmltest.u-ga.fr/item/CM_1972__25_3_245_0/

W. Ambrose [1] Structure theorems for a special class of Banach algebras. Trans. AMS 57 (1945) 364-386. | MR 13235 | Zbl 0060.26906

M.F. Atiyah, R. Bott and A. Shapiro [2] Clifford modules. Topology vol. 3 suppl. 1 (1964) 3-38. | MR 167985 | Zbl 0146.19001

M.F. Atiyah and I.M. Singer [3] Index of elliptic operators III. Ann. of Math. 87 (1968) 546-604. | MR 236952 | Zbl 0164.24301

R.J. Blattner [4] Automorphic group representations. Pacific J. Math. 8 (1958) 665-677. | MR 103421 | Zbl 0087.32001

N. Bourbaki [5] Algèbre, chapitre 9. Hermann 1959. | Zbl 0102.25503

C. Chevalley [6] The algebraic theory of spinors. Columbia University Press, New York 1954. | MR 60497 | Zbl 0057.25901

Ja L. Dalec'Kii [7] Infinite dimensional elliptic operators and parabolic equations connected with them. Russian Math. Surveys 29 (1970) no 4, 1-53. | Zbl 0164.41304

J. Dieudonné [8] Eléments d'analyse, 2. Gauthiers-Villars 1968. | Zbl 0189.05502

J. Dixmier [9] Les algèbres d'opérateurs dans l'espace hilbertien (algèbres de von Neumann), deuxième édition. Gauthier-Villars 1969. | MR 352996 | Zbl 0175.43801

S. Doplicher and R.T. Powers [10] On the simplicity of the even CAR algebra and free field models. Commun. Math. Phys. 7 (1968) 77-79. | MR 225543 | Zbl 0173.29804

A. Guichardet [11] Produits tensoriels infinis et représentations des relations d'anticommutation. Ann. Scient. Ec. Norm. Sup. (3) 83 (1966) 1-52. | Numdam | MR 205097 | Zbl 0154.38905

A. Haefliger [12] Sur l'extension du groupe structural d'un espace fibré. C. R. Acad. Sci. Paris 243 (1956) 558-560. | MR 84775 | Zbl 0070.40001

V.L. Hansen [13] Some theorems on direct limits of expanding sequences of manifolds. Math. Scand. 29 (1971) 5-36. | MR 319206 | Zbl 0229.58005

P. De La Harpe [14] Classical Banach-Lie algebras and Banach-Lie groups in Hilbert space. Springer Lecture Notes, 285 (1972). | MR 476820 | Zbl 0256.22015

F. Hirzebruch [15] Topological methods in algebraic geometry. Third edition, Springer 1966. | MR 1335917 | Zbl 0138.42001

N. Jacobson [16] Lie algebras. Interscience 1962. | MR 143793 | Zbl 0121.27504

M. Karoubi [17] Algèbres de Clifford et K-théorie. Ann. Scient. Ec. Norm. Sup. (4) 1 (1968) 161-270. | Numdam | MR 238927 | Zbl 0194.24101

U. Koschorke [18] Infinite dimensional K-theory and characteristic classes of Fredholm bundle maps. Global Analysis, Berkeley, July 1968. Proc Sympos. Pure Math., XV (1970) 95-133. | MR 279838 | Zbl 0207.53602

M. Lazard [19] Groupes différentiables. 'Neuvième leçon' of a course to be published in book-form.

J. Milnor [20] Spin structures on manifolds. Enseignement Math. (2) 9 (1963) 198-203. | MR 157388 | Zbl 0116.40403

R.S. Palais [21 ] Homotopy theory of infinite dimensional manifolds. Topology 5 (1966) 1-16. | MR 189028 | Zbl 0138.18302

C.R. Putnam and A. Wintner [22] The orthogonal group in Hilbert space. Amer. J. Math. 74 (1952) 52-78 | MR 45121 | Zbl 0049.35502

D. Shale and W.F. Stinespring [23] Spinor representations of infinite orthogonal groups. J. Math. Mech. 14 (1965) 315-322. | MR 173163 | Zbl 0132.36003

J. Slawny [24] Representations of canonical anticommutation relations and implementability of canonical transformations. Thesis, The Weizmann Institute of Science, Rehovot 1969. | Zbl 0219.46047

J. Slawny [25] Same title. Commun. Math. Phys. 22 (1971) 104-114. | Zbl 0219.46047

E. Størmer [26] The even CAR-algebra. Commun. Math. Phys. 16 (1970) 136-137. | MR 269232 | Zbl 0187.38503