@article{CM_1972__25_3_245_0, author = {La Harpe, Pierre de}, title = {The Clifford algebra and the Spinor group of a Hilbert space}, journal = {Compositio Mathematica}, volume = {25}, year = {1972}, pages = {245-261}, mrnumber = {317068}, zbl = {0244.22018}, language = {en}, url = {http://dml.mathdoc.fr/item/CM_1972__25_3_245_0} }
La Harpe, P. de. The Clifford algebra and the Spinor group of a Hilbert space. Compositio Mathematica, Tome 25 (1972) pp. 245-261. http://gdmltest.u-ga.fr/item/CM_1972__25_3_245_0/
Structure theorems for a special class of Banach algebras. Trans. AMS 57 (1945) 364-386. | MR 13235 | Zbl 0060.26906
[1]Clifford modules. Topology vol. 3 suppl. 1 (1964) 3-38. | MR 167985 | Zbl 0146.19001
, and [2]Index of elliptic operators III. Ann. of Math. 87 (1968) 546-604. | MR 236952 | Zbl 0164.24301
and [3]Automorphic group representations. Pacific J. Math. 8 (1958) 665-677. | MR 103421 | Zbl 0087.32001
[4]Algèbre, chapitre 9. Hermann 1959. | Zbl 0102.25503
[5]The algebraic theory of spinors. Columbia University Press, New York 1954. | MR 60497 | Zbl 0057.25901
[6]Infinite dimensional elliptic operators and parabolic equations connected with them. Russian Math. Surveys 29 (1970) no 4, 1-53. | Zbl 0164.41304
[7]Eléments d'analyse, 2. Gauthiers-Villars 1968. | Zbl 0189.05502
[8]Les algèbres d'opérateurs dans l'espace hilbertien (algèbres de von Neumann), deuxième édition. Gauthier-Villars 1969. | MR 352996 | Zbl 0175.43801
[9]On the simplicity of the even CAR algebra and free field models. Commun. Math. Phys. 7 (1968) 77-79. | MR 225543 | Zbl 0173.29804
and [10]Produits tensoriels infinis et représentations des relations d'anticommutation. Ann. Scient. Ec. Norm. Sup. (3) 83 (1966) 1-52. | Numdam | MR 205097 | Zbl 0154.38905
[11]Sur l'extension du groupe structural d'un espace fibré. C. R. Acad. Sci. Paris 243 (1956) 558-560. | MR 84775 | Zbl 0070.40001
[12]Some theorems on direct limits of expanding sequences of manifolds. Math. Scand. 29 (1971) 5-36. | MR 319206 | Zbl 0229.58005
[13]Classical Banach-Lie algebras and Banach-Lie groups in Hilbert space. Springer Lecture Notes, 285 (1972). | MR 476820 | Zbl 0256.22015
[14]Topological methods in algebraic geometry. Third edition, Springer 1966. | MR 1335917 | Zbl 0138.42001
[15]Lie algebras. Interscience 1962. | MR 143793 | Zbl 0121.27504
[16]Algèbres de Clifford et K-théorie. Ann. Scient. Ec. Norm. Sup. (4) 1 (1968) 161-270. | Numdam | MR 238927 | Zbl 0194.24101
[17]Infinite dimensional K-theory and characteristic classes of Fredholm bundle maps. Global Analysis, Berkeley, July 1968. Proc Sympos. Pure Math., XV (1970) 95-133. | MR 279838 | Zbl 0207.53602
[18]Groupes différentiables. 'Neuvième leçon' of a course to be published in book-form.
[19]Spin structures on manifolds. Enseignement Math. (2) 9 (1963) 198-203. | MR 157388 | Zbl 0116.40403
[20]Homotopy theory of infinite dimensional manifolds. Topology 5 (1966) 1-16. | MR 189028 | Zbl 0138.18302
[21 ]The orthogonal group in Hilbert space. Amer. J. Math. 74 (1952) 52-78 | MR 45121 | Zbl 0049.35502
and [22]Spinor representations of infinite orthogonal groups. J. Math. Mech. 14 (1965) 315-322. | MR 173163 | Zbl 0132.36003
and [23]Representations of canonical anticommutation relations and implementability of canonical transformations. Thesis, The Weizmann Institute of Science, Rehovot 1969. | Zbl 0219.46047
[24]Same title. Commun. Math. Phys. 22 (1971) 104-114. | Zbl 0219.46047
[25]The even CAR-algebra. Commun. Math. Phys. 16 (1970) 136-137. | MR 269232 | Zbl 0187.38503
[26]