Generalized quotients of hemirings
Mosher, James R.
Compositio Mathematica, Tome 22 (1970), p. 275-281 / Harvested from Numdam
@article{CM_1970__22_3_275_0,
     author = {Mosher, James R.},
     title = {Generalized quotients of hemirings},
     journal = {Compositio Mathematica},
     volume = {22},
     year = {1970},
     pages = {275-281},
     mrnumber = {272837},
     zbl = {0205.05302},
     language = {en},
     url = {http://dml.mathdoc.fr/item/CM_1970__22_3_275_0}
}
Mosher, James R. Generalized quotients of hemirings. Compositio Mathematica, Tome 22 (1970) pp. 275-281. http://gdmltest.u-ga.fr/item/CM_1970__22_3_275_0/

P. Allen [1] Ideal theory in semirings, Dissertation, Texas Christian University, 1967.

S. Bourne AND H. Zassenhaus [2] On the semiradical of a semiring, Proc. Nat. Acad. Sci. U.S.A., Vol. 44 (1958), 907-914. | MR 97430 | Zbl 0084.03403

J. Dieudonné [3] Topics in Local Algebra, Notre Dame Mathematical Lectures Number 10, Notre Dame, Indiana: Notre Dame Press, 1967. | MR 241408 | Zbl 0193.00101

M. Henriksen [4] Ideals in semirings with commutative addition, Notices A.M.S., Vol. 5 (1958) 321.

K. Iizuka [5] On the Jacobson radical of a semiring, Tohoku Math. J., Vol. 2 (1959) 409-421. | MR 110736 | Zbl 0122.25504

F. Lambek [6] Lectures on Rings and Modules, Toronto: Blaisdell Publishing Co., 1966. | MR 206032 | Zbl 0143.26403

D. Latorre [7] On h-ideals and k-ideals in hemirings, Publ. Math. Debrecen, Vol. 12 (1965) 219-226. | MR 200315 | Zbl 0168.28302

K. Murata [8] On the quotient semigroup of a non-commutative semigroup, Osaka Math. J., Vol. 2 (1950) 1-5. | MR 36753 | Zbl 0036.29301

M. Nagata [9] Local Rings, Interscience Tracts in Pure and Applied Mathematics Number 13, New York: Interscience Publishers, 1962. | MR 155856 | Zbl 0123.03402

H. Weinert [10] Über Halbringe und Halbkörper II, Acta Math. Acad. Sci. Hungary, Vol. 14 (1963), 209-227. | MR 148713 | Zbl 0125.01002

O. Zariski AND P. Samuel [11] Commutative Algebra, Vol. 1, Princeton: D. Van Nostrand Co., Inc., 1959. | Zbl 0121.27801