@article{CM_1970__22_3_269_0, author = {Goebel, K.}, title = {Convexity of balls and fixed-point theorems for mappings with nonexpansive square}, journal = {Compositio Mathematica}, volume = {22}, year = {1970}, pages = {269-274}, mrnumber = {273477}, zbl = {0202.12802}, language = {en}, url = {http://dml.mathdoc.fr/item/CM_1970__22_3_269_0} }
Goebel, K. Convexity of balls and fixed-point theorems for mappings with nonexpansive square. Compositio Mathematica, Tome 22 (1970) pp. 269-274. http://gdmltest.u-ga.fr/item/CM_1970__22_3_269_0/
Every infinite-dimensiona 1 Hilbert space is diffeomorphic with its unit sphere. Bull. Acad. Polon. Sci. 19 (1966), pp. 27-31. | MR 193646 | Zbl 0151.17703
[1]On the center of a convex set, Dokl. Acad. Nauk SSSR N.S., 59 (1948) pp. 837-840. | MR 24073 | Zbl 0030.39603
AND [2]Nonexpansive nonlinear operators in a Banach space, Proc. Nat. Acad. Sci. USA 54 (1965), pp. 1041-1044. | MR 187120 | Zbl 0128.35801
[3]Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), pp 396-414. | JFM 62.0460.04 | MR 1501880 | Zbl 0015.35604
[4]Uniformly non-square Banach spaces, Ann. of Math. 80 (1964), pp. 542-550. | MR 173932 | Zbl 0132.08902
[5]A fixed point theorems for mappings which do not increase distances, Amer. Math. Monthly 72 (1965) pp. 1004-1006. | MR 189009 | Zbl 0141.32402
[6]Lecture notes on nonexpansive and monotone mappings in Banach spaces, Center for Dynamical Systems, Division of Applied Mathematics, Brown University, Providence, Rhode Island USA (1967).
[7]