@article{CM_1969__21_3_312_0, author = {Henderson, David W.}, title = {Open subsets of Hilbert space}, journal = {Compositio Mathematica}, volume = {21}, year = {1969}, pages = {312-318}, mrnumber = {251748}, zbl = {0179.52102}, language = {en}, url = {http://dml.mathdoc.fr/item/CM_1969__21_3_312_0} }
Henderson, David W. Open subsets of Hilbert space. Compositio Mathematica, Tome 21 (1969) pp. 312-318. http://gdmltest.u-ga.fr/item/CM_1969__21_3_312_0/
Hilbert space is homeomorphic to the countable infinite product of reallines, Bull. AMS, 72 (1966), 515-519. | MR 190888 | Zbl 0137.09703
[1]On topological infinite deficiency, Michigan Math. J., 14 (1967), 365-383. | MR 214041 | Zbl 0148.37202
[2]A complete elementary proof that Hilbert space is homeomorphic to the countable infinite product of lines, Bull. AMS 74 (1968), 771-792. | Zbl 0189.12402
and [3]Negligible subsets of infinite-dimensional manifolds, to appear in Compositio Math. | Numdam | MR 246326 | Zbl 0185.50803
, and [4]Remark on spaces dominated by manifolds. Fund. Math. XLVII (1959), 45-56. | MR 105690 | Zbl 0088.39203
and [5]Homotopy type of differentiable manifolds. Colloq. Alg. Topology. Aarhus Univ. (1962), 42-46. | Zbl 0144.22701
[6]On the differential topology of Hilbertian manifolds, to appear in the Proceedings of the Summer Institute on Global Analysis, Berkeley (1968). | Zbl 0205.53602
and [7]Infinite-dimensional manifolds, Proceedings of the International Symposium on Topology and its Applications, Herceg Novi, Jugoslavia, 1968. | MR 285036 | Zbl 0202.21801
[8]Infinite-dimensional Manifolds are Open Subsets of Hilbert Space, to appear in Bulletin AMS and Topology. | MR 250342 | Zbl 0167.51904
[9]Convex bodies and periodic homeomorphism in Hilbert space, Trans. AMS 74 (1953), 10-43. | Zbl 0050.33202
[10]Hilbert manifolds, to appear. | MR 253374 | Zbl 0195.53501
and [11]Sur les variétés hilbertiennes et les fonctions non dégénereés, to appear. | MR 254876 | Zbl 0167.50204
[12]Homotopically equivalent smooth manifolds I. ИаВ. AH 28 (1964), 365-474. A.M.S. Transl. 48, 271-396. | Zbl 0151.32103
, [13]Finiteness conditions for CW complexes. Ann. Math. 81 (1965), 56-69. | MR 171284 | Zbl 0152.21902
[14]Lectures on Polyhedral Topology, Tata Institute, Bombay, India, 1968. | MR 238329 | Zbl 0182.26203
[15]